An issue was discovered in Django 2.0 before 2.0.3, 1.11 before 1.11.11, and 1.8 before 1.8.19. If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable.
django.contrib.auth.forms.AuthenticationForm in Django 2.0 before 2.0.2, and 1.11.8 and 1.11.9, allows remote attackers to obtain potentially sensitive information by leveraging data exposure from the confirm_login_allowed() method, as demonstrated by discovering whether a user account is inactive.
In Django 1.10.x before 1.10.8 and 1.11.x before 1.11.5, HTML autoescaping was disabled in a portion of the template for the technical 500 debug page. Given the right circumstances, this allowed a cross-site scripting attack. This vulnerability shouldn't affect most production sites since you shouldn't run with "DEBUG = True" (which makes this page accessible) in your production settings.
Django 1.10 before 1.10.7, 1.9 before 1.9.13, and 1.8 before 1.8.18 relies on user input in some cases to redirect the user to an "on success" URL. The security check for these redirects (namely ``django.utils.http.is_safe_url()``) considered some numeric URLs "safe" when they shouldn't be, aka an open redirect vulnerability. Also, if a developer relies on ``is_safe_url()`` to provide safe redirect targets and puts such a URL into a link, they could suffer from an XSS attack.
A maliciously crafted URL to a Django (1.10 before 1.10.7, 1.9 before 1.9.13, and 1.8 before 1.8.18) site using the ``django.views.static.serve()`` view could redirect to any other domain, aka an open redirect vulnerability.
Django before 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3, when settings.DEBUG is True, allow remote attackers to conduct DNS rebinding attacks by leveraging failure to validate the HTTP Host header against settings.ALLOWED_HOSTS.
Django 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3 use a hardcoded password for a temporary database user created when running tests with an Oracle database, which makes it easier for remote attackers to obtain access to the database server by leveraging failure to manually specify a password in the database settings TEST dictionary.
The cookie parsing code in Django before 1.8.15 and 1.9.x before 1.9.10, when used on a site with Google Analytics, allows remote attackers to bypass an intended CSRF protection mechanism by setting arbitrary cookies.
Cross-site scripting (XSS) vulnerability in the dismissChangeRelatedObjectPopup function in contrib/admin/static/admin/js/admin/RelatedObjectLookups.js in Django before 1.8.14, 1.9.x before 1.9.8, and 1.10.x before 1.10rc1 allows remote attackers to inject arbitrary web script or HTML via vectors involving unsafe usage of Element.innerHTML.
The password hasher in contrib/auth/hashers.py in Django before 1.8.10 and 1.9.x before 1.9.3 allows remote attackers to enumerate users via a timing attack involving login requests.