The TCP implementation in (1) Linux, (2) platforms based on BSD Unix, (3) Microsoft Windows, (4) Cisco products, and probably other operating systems allows remote attackers to cause a denial of service (connection queue exhaustion) via multiple vectors that manipulate information in the TCP state table, as demonstrated by sockstress.
The IPv6 Neighbor Discovery Protocol (NDP) implementation in (1) FreeBSD 6.3 through 7.1, (2) OpenBSD 4.2 and 4.3, (3) NetBSD, (4) Force10 FTOS before E7.7.1.1, (5) Juniper JUNOS, and (6) Wind River VxWorks 5.x through 6.4 does not validate the origin of Neighbor Discovery messages, which allows remote attackers to cause a denial of service (loss of connectivity) or read private network traffic via a spoofed message that modifies the Forward Information Base (FIB).
ftpd in OpenBSD 4.3, FreeBSD 7.0, NetBSD 4.0, Solaris, and possibly other operating systems interprets long commands from an FTP client as multiple commands, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks and execute arbitrary FTP commands via a long ftp:// URI that leverages an existing session from the FTP client implementation in a web browser.
Stack-based buffer overflow in the command_Expand_Interpret function in command.c in ppp (aka user-ppp), as distributed in FreeBSD 6.3 and 7.0, OpenBSD 4.1 and 4.2, and the net/userppp package for NetBSD, allows local users to gain privileges via long commands containing "~" characters.
A certain pseudo-random number generator (PRNG) algorithm that uses XOR and 3-bit random hops (aka "Algorithm X3"), as used in OpenBSD 2.8 through 4.2, allows remote attackers to guess sensitive values such as DNS transaction IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as DNS cache poisoning against OpenBSD's modification of BIND.
A certain pseudo-random number generator (PRNG) algorithm that uses XOR and 2-bit random hops (aka "Algorithm X2"), as used in OpenBSD 2.6 through 3.4, Mac OS X 10 through 10.5.1, FreeBSD 4.4 through 7.0, and DragonFlyBSD 1.0 through 1.10.1, allows remote attackers to guess sensitive values such as IP fragmentation IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as injection into TCP packets and OS fingerprinting.
A certain pseudo-random number generator (PRNG) algorithm that uses ADD with 0 random hops (aka "Algorithm A0"), as used in OpenBSD 3.5 through 4.2 and NetBSD 1.6.2 through 4.0, allows remote attackers to guess sensitive values such as (1) DNS transaction IDs or (2) IP fragmentation IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as DNS cache poisoning, injection into TCP packets, and OS fingerprinting.
The ip6_check_rh0hdr function in netinet6/ip6_input.c in OpenBSD 4.2 allows attackers to cause a denial of service (panic) via malformed IPv6 routing headers.
The tcp_respond function in netinet/tcp_subr.c in OpenBSD 4.1 and 4.2 allows attackers to cause a denial of service (panic) via crafted TCP packets. NOTE: some of these details are obtained from third party information.
Cross-site scripting (XSS) vulnerability in cgi-bin/bgplg in the web interface for the BGPD daemon in OpenBSD 4.1 allows remote attackers to inject arbitrary web script or HTML via the cmd parameter.