In the Linux kernel, the following vulnerability has been resolved:
fs/9p: only translate RWX permissions for plain 9P2000
Garbage in plain 9P2000's perm bits is allowed through, which causes it
to be able to set (among others) the suid bit. This was presumably not
the intent since the unix extended bits are handled explicitly and
conditionally on .u.
In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: mask bus reset interrupts between ISR and bottom half
In the FireWire OHCI interrupt handler, if a bus reset interrupt has
occurred, mask bus reset interrupts until bus_reset_work has serviced and
cleared the interrupt.
Normally, we always leave bus reset interrupts masked. We infer the bus
reset from the self-ID interrupt that happens shortly thereafter. A
scenario where we unmask bus reset interrupts was introduced in 2008 in
a007bb857e0b26f5d8b73c2ff90782d9c0972620: If
OHCI_PARAM_DEBUG_BUSRESETS (8) is set in the debug parameter bitmask, we
will unmask bus reset interrupts so we can log them.
irq_handler logs the bus reset interrupt. However, we can't clear the bus
reset event flag in irq_handler, because we won't service the event until
later. irq_handler exits with the event flag still set. If the
corresponding interrupt is still unmasked, the first bus reset will
usually freeze the system due to irq_handler being called again each
time it exits. This freeze can be reproduced by loading firewire_ohci
with "modprobe firewire_ohci debug=-1" (to enable all debugging output).
Apparently there are also some cases where bus_reset_work will get called
soon enough to clear the event, and operation will continue normally.
This freeze was first reported a few months after a007bb85 was committed,
but until now it was never fixed. The debug level could safely be set
to -1 through sysfs after the module was loaded, but this would be
ineffectual in logging bus reset interrupts since they were only
unmasked during initialization.
irq_handler will now leave the event flag set but mask bus reset
interrupts, so irq_handler won't be called again and there will be no
freeze. If OHCI_PARAM_DEBUG_BUSRESETS is enabled, bus_reset_work will
unmask the interrupt after servicing the event, so future interrupts
will be caught as desired.
As a side effect to this change, OHCI_PARAM_DEBUG_BUSRESETS can now be
enabled through sysfs in addition to during initial module loading.
However, when enabled through sysfs, logging of bus reset interrupts will
be effective only starting with the second bus reset, after
bus_reset_work has executed.
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-v2: Check for non-NULL vCPU in vgic_v2_parse_attr()
vgic_v2_parse_attr() is responsible for finding the vCPU that matches
the user-provided CPUID, which (of course) may not be valid. If the ID
is invalid, kvm_get_vcpu_by_id() returns NULL, which isn't handled
gracefully.
Similar to the GICv3 uaccess flow, check that kvm_get_vcpu_by_id()
actually returns something and fail the ioctl if not.
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a possible memleak in tipc_buf_append
__skb_linearize() doesn't free the skb when it fails, so move
'*buf = NULL' after __skb_linearize(), so that the skb can be
freed on the err path.
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: core: delete incorrect free in pinctrl_enable()
The "pctldev" struct is allocated in devm_pinctrl_register_and_init().
It's a devm_ managed pointer that is freed by devm_pinctrl_dev_release(),
so freeing it in pinctrl_enable() will lead to a double free.
The devm_pinctrl_dev_release() function frees the pindescs and destroys
the mutex as well.
In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: don't free NULL coalescing rule
If the parsing fails, we can dereference a NULL pointer here.
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
VMBus code could free decrypted pages if set_memory_encrypted()/decrypted()
fails. Leak the pages if this happens.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_nxt is properly initialized on connect
Christoph reported a splat hinting at a corrupted snd_una:
WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Modules linked in:
CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8
8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe
<0f> 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9
RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4
RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000
R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000
FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0
Call Trace:
<TASK>
__mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline]
mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline]
__mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615
mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767
process_one_work+0x1e0/0x560 kernel/workqueue.c:3254
process_scheduled_works kernel/workqueue.c:3335 [inline]
worker_thread+0x3c7/0x640 kernel/workqueue.c:3416
kthread+0x121/0x170 kernel/kthread.c:388
ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
</TASK>
When fallback to TCP happens early on a client socket, snd_nxt
is not yet initialized and any incoming ack will copy such value
into snd_una. If the mptcp worker (dumbly) tries mptcp-level
re-injection after such ack, that would unconditionally trigger a send
buffer cleanup using 'bad' snd_una values.
We could easily disable re-injection for fallback sockets, but such
dumb behavior already helped catching a few subtle issues and a very
low to zero impact in practice.
Instead address the issue always initializing snd_nxt (and write_seq,
for consistency) at connect time.