In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: Fix a deadlock in the error handler
The following deadlock has been observed on a test setup:
- All tags allocated
- The SCSI error handler calls ufshcd_eh_host_reset_handler()
- ufshcd_eh_host_reset_handler() queues work that calls
ufshcd_err_handler()
- ufshcd_err_handler() locks up as follows:
Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt
Call trace:
__switch_to+0x298/0x5d8
__schedule+0x6cc/0xa94
schedule+0x12c/0x298
blk_mq_get_tag+0x210/0x480
__blk_mq_alloc_request+0x1c8/0x284
blk_get_request+0x74/0x134
ufshcd_exec_dev_cmd+0x68/0x640
ufshcd_verify_dev_init+0x68/0x35c
ufshcd_probe_hba+0x12c/0x1cb8
ufshcd_host_reset_and_restore+0x88/0x254
ufshcd_reset_and_restore+0xd0/0x354
ufshcd_err_handler+0x408/0xc58
process_one_work+0x24c/0x66c
worker_thread+0x3e8/0xa4c
kthread+0x150/0x1b4
ret_from_fork+0x10/0x30
Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved
request.
In the Linux kernel, the following vulnerability has been resolved:
net/sunrpc: fix reference count leaks in rpc_sysfs_xprt_state_change
The refcount leak issues take place in an error handling path. When the
3rd argument buf doesn't match with "offline", "online" or "remove", the
function simply returns -EINVAL and forgets to decrease the reference
count of a rpc_xprt object and a rpc_xprt_switch object increased by
rpc_sysfs_xprt_kobj_get_xprt() and
rpc_sysfs_xprt_kobj_get_xprt_switch(), causing reference count leaks of
both unused objects.
Fix this issue by jumping to the error handling path labelled with
out_put when buf matches none of "offline", "online" or "remove".
In the Linux kernel, the following vulnerability has been resolved:
xprtrdma: fix pointer derefs in error cases of rpcrdma_ep_create
If there are failures then we must not leave the non-NULL pointers with
the error value, otherwise `rpcrdma_ep_destroy` gets confused and tries
free them, resulting in an Oops.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: work around a potential audit memory leak
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything.
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - Fix memory leak for sec resource release
The AIV is one of the SEC resources. When releasing resources,
it need to release the AIV resources at the same time.
Otherwise, memory leakage occurs.
The aiv resource release is added to the sec resource release
function.
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate: fix memory leak on CPU EPP exit
The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is
not freed in the analogous exit function, so fix that.
[ rjw: Subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery.
In the Linux kernel, the following vulnerability has been resolved:
drop_monitor: replace spin_lock by raw_spin_lock
trace_drop_common() is called with preemption disabled, and it acquires
a spin_lock. This is problematic for RT kernels because spin_locks are
sleeping locks in this configuration, which causes the following splat:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 449, name: rcuc/47
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
5 locks held by rcuc/47/449:
#0: ff1100086ec30a60 ((softirq_ctrl.lock)){+.+.}-{2:2}, at: __local_bh_disable_ip+0x105/0x210
#1: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: rt_spin_lock+0xbf/0x130
#2: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: __local_bh_disable_ip+0x11c/0x210
#3: ffffffffb394a160 (rcu_callback){....}-{0:0}, at: rcu_do_batch+0x360/0xc70
#4: ff1100086ee07520 (&data->lock){+.+.}-{2:2}, at: trace_drop_common.constprop.0+0xb5/0x290
irq event stamp: 139909
hardirqs last enabled at (139908): [<ffffffffb1df2b33>] _raw_spin_unlock_irqrestore+0x63/0x80
hardirqs last disabled at (139909): [<ffffffffb19bd03d>] trace_drop_common.constprop.0+0x26d/0x290
softirqs last enabled at (139892): [<ffffffffb07a1083>] __local_bh_enable_ip+0x103/0x170
softirqs last disabled at (139898): [<ffffffffb0909b33>] rcu_cpu_kthread+0x93/0x1f0
Preemption disabled at:
[<ffffffffb1de786b>] rt_mutex_slowunlock+0xab/0x2e0
CPU: 47 PID: 449 Comm: rcuc/47 Not tainted 6.9.0-rc2-rt1+ #7
Hardware name: Dell Inc. PowerEdge R650/0Y2G81, BIOS 1.6.5 04/15/2022
Call Trace:
<TASK>
dump_stack_lvl+0x8c/0xd0
dump_stack+0x14/0x20
__might_resched+0x21e/0x2f0
rt_spin_lock+0x5e/0x130
? trace_drop_common.constprop.0+0xb5/0x290
? skb_queue_purge_reason.part.0+0x1bf/0x230
trace_drop_common.constprop.0+0xb5/0x290
? preempt_count_sub+0x1c/0xd0
? _raw_spin_unlock_irqrestore+0x4a/0x80
? __pfx_trace_drop_common.constprop.0+0x10/0x10
? rt_mutex_slowunlock+0x26a/0x2e0
? skb_queue_purge_reason.part.0+0x1bf/0x230
? __pfx_rt_mutex_slowunlock+0x10/0x10
? skb_queue_purge_reason.part.0+0x1bf/0x230
trace_kfree_skb_hit+0x15/0x20
trace_kfree_skb+0xe9/0x150
kfree_skb_reason+0x7b/0x110
skb_queue_purge_reason.part.0+0x1bf/0x230
? __pfx_skb_queue_purge_reason.part.0+0x10/0x10
? mark_lock.part.0+0x8a/0x520
...
trace_drop_common() also disables interrupts, but this is a minor issue
because we could easily replace it with a local_lock.
Replace the spin_lock with raw_spin_lock to avoid sleeping in atomic
context.