Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.1.47  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: netlink: Bounds-check struct nlmsgerr creation In preparation for FORTIFY_SOURCE doing bounds-check on memcpy(), switch from __nlmsg_put to nlmsg_put(), and explain the bounds check for dealing with the memcpy() across a composite flexible array struct. Avoids this future run-time warning: memcpy: detected field-spanning write (size 32) of single field "&errmsg->msg" at net/netlink/af_netlink.c:2447 (size 16)
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: 9p/trans_fd: always use O_NONBLOCK read/write syzbot is reporting hung task at p9_fd_close() [1], for p9_mux_poll_stop() from p9_conn_destroy() from p9_fd_close() is failing to interrupt already started kernel_read() from p9_fd_read() from p9_read_work() and/or kernel_write() from p9_fd_write() from p9_write_work() requests. Since p9_socket_open() sets O_NONBLOCK flag, p9_mux_poll_stop() does not need to interrupt kernel_read()/kernel_write(). However, since p9_fd_open() does not set O_NONBLOCK flag, but pipe blocks unless signal is pending, p9_mux_poll_stop() needs to interrupt kernel_read()/kernel_write() when the file descriptor refers to a pipe. In other words, pipe file descriptor needs to be handled as if socket file descriptor. We somehow need to interrupt kernel_read()/kernel_write() on pipes. A minimal change, which this patch is doing, is to set O_NONBLOCK flag from p9_fd_open(), for O_NONBLOCK flag does not affect reading/writing of regular files. But this approach changes O_NONBLOCK flag on userspace- supplied file descriptors (which might break userspace programs), and O_NONBLOCK flag could be changed by userspace. It would be possible to set O_NONBLOCK flag every time p9_fd_read()/p9_fd_write() is invoked, but still remains small race window for clearing O_NONBLOCK flag. If we don't want to manipulate O_NONBLOCK flag, we might be able to surround kernel_read()/kernel_write() with set_thread_flag(TIF_SIGPENDING) and recalc_sigpending(). Since p9_read_work()/p9_write_work() works are processed by kernel threads which process global system_wq workqueue, signals could not be delivered from remote threads when p9_mux_poll_stop() from p9_conn_destroy() from p9_fd_close() is called. Therefore, calling set_thread_flag(TIF_SIGPENDING)/recalc_sigpending() every time would be needed if we count on signals for making kernel_read()/kernel_write() non-blocking. [Dominique: add comment at Christian's suggestion]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: gfs2: Check sb_bsize_shift after reading superblock Fuzzers like to scribble over sb_bsize_shift but in reality it's very unlikely that this field would be corrupted on its own. Nevertheless it should be checked to avoid the possibility of messy mount errors due to bad calculations. It's always a fixed value based on the block size so we can just check that it's the expected value. Tested with: mkfs.gfs2 -O -p lock_nolock /dev/vdb for i in 0 -1 64 65 32 33; do gfs2_edit -p sb field sb_bsize_shift $i /dev/vdb mount /dev/vdb /mnt/test && umount /mnt/test done Before this patch we get a withdraw after [ 76.413681] gfs2: fsid=loop0.0: fatal: invalid metadata block [ 76.413681] bh = 19 (type: exp=5, found=4) [ 76.413681] function = gfs2_meta_buffer, file = fs/gfs2/meta_io.c, line = 492 and with UBSAN configured we also get complaints like [ 76.373395] UBSAN: shift-out-of-bounds in fs/gfs2/ops_fstype.c:295:19 [ 76.373815] shift exponent 4294967287 is too large for 64-bit type 'long unsigned int' After the patch, these complaints don't appear, mount fails immediately and we get an explanation in dmesg.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ceph: avoid putting the realm twice when decoding snaps fails When decoding the snaps fails it maybe leaving the 'first_realm' and 'realm' pointing to the same snaprealm memory. And then it'll put it twice and could cause random use-after-free, BUG_ON, etc issues.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ntfs: check overflow when iterating ATTR_RECORDs Kernel iterates over ATTR_RECORDs in mft record in ntfs_attr_find(). Because the ATTR_RECORDs are next to each other, kernel can get the next ATTR_RECORD from end address of current ATTR_RECORD, through current ATTR_RECORD length field. The problem is that during iteration, when kernel calculates the end address of current ATTR_RECORD, kernel may trigger an integer overflow bug in executing `a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))`. This may wrap, leading to a forever iteration on 32bit systems. This patch solves it by adding some checks on calculating end address of current ATTR_RECORD during iteration.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: wifi: at76c50x: fix use after free access in at76_disconnect The memory pointed to by priv is freed at the end of at76_delete_device function (using ieee80211_free_hw). But the code then accesses the udev field of the freed object to put the USB device. This may also lead to a memory leak of the usb device. Fix this by using udev from interface.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: fix nested key length validation in the set() action It's not safe to access nla_len(ovs_key) if the data is smaller than the netlink header. Check that the attribute is OK first.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Purge vif txq in ieee80211_do_stop() After ieee80211_do_stop() SKB from vif's txq could still be processed. Indeed another concurrent vif schedule_and_wake_txq call could cause those packets to be dequeued (see ieee80211_handle_wake_tx_queue()) without checking the sdata current state. Because vif.drv_priv is now cleared in this function, this could lead to driver crash. For example in ath12k, ahvif is store in vif.drv_priv. Thus if ath12k_mac_op_tx() is called after ieee80211_do_stop(), ahvif->ah can be NULL, leading the ath12k_warn(ahvif->ah,...) call in this function to trigger the NULL deref below. Unable to handle kernel paging request at virtual address dfffffc000000001 KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] batman_adv: bat0: Interface deactivated: brbh1337 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [dfffffc000000001] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP CPU: 1 UID: 0 PID: 978 Comm: lbd Not tainted 6.13.0-g633f875b8f1e #114 Hardware name: HW (DT) pstate: 10000005 (nzcV daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] lr : ath12k_mac_op_tx+0x174/0x29b8 [ath12k] sp : ffffffc086ace450 x29: ffffffc086ace450 x28: 0000000000000000 x27: 1ffffff810d59ca4 x26: ffffff801d05f7c0 x25: 0000000000000000 x24: 000000004000001e x23: ffffff8009ce4926 x22: ffffff801f9c0800 x21: ffffff801d05f7f0 x20: ffffff8034a19f40 x19: 0000000000000000 x18: ffffff801f9c0958 x17: ffffff800bc0a504 x16: dfffffc000000000 x15: ffffffc086ace4f8 x14: ffffff801d05f83c x13: 0000000000000000 x12: ffffffb003a0bf03 x11: 0000000000000000 x10: ffffffb003a0bf02 x9 : ffffff8034a19f40 x8 : ffffff801d05f818 x7 : 1ffffff0069433dc x6 : ffffff8034a19ee0 x5 : ffffff801d05f7f0 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : dfffffc000000000 x0 : 0000000000000008 Call trace: ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] (P) ieee80211_handle_wake_tx_queue+0x16c/0x260 ieee80211_queue_skb+0xeec/0x1d20 ieee80211_tx+0x200/0x2c8 ieee80211_xmit+0x22c/0x338 __ieee80211_subif_start_xmit+0x7e8/0xc60 ieee80211_subif_start_xmit+0xc4/0xee0 __ieee80211_subif_start_xmit_8023.isra.0+0x854/0x17a0 ieee80211_subif_start_xmit_8023+0x124/0x488 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 br_dev_queue_push_xmit+0x120/0x4a8 __br_forward+0xe4/0x2b0 deliver_clone+0x5c/0xd0 br_flood+0x398/0x580 br_dev_xmit+0x454/0x9f8 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 ip6_finish_output2+0xc28/0x1b60 __ip6_finish_output+0x38c/0x638 ip6_output+0x1b4/0x338 ip6_local_out+0x7c/0xa8 ip6_send_skb+0x7c/0x1b0 ip6_push_pending_frames+0x94/0xd0 rawv6_sendmsg+0x1a98/0x2898 inet_sendmsg+0x94/0xe0 __sys_sendto+0x1e4/0x308 __arm64_sys_sendto+0xc4/0x140 do_el0_svc+0x110/0x280 el0_svc+0x20/0x60 el0t_64_sync_handler+0x104/0x138 el0t_64_sync+0x154/0x158 To avoid that, empty vif's txq at ieee80211_do_stop() so no packet could be dequeued after ieee80211_do_stop() (new packets cannot be queued because SDATA_STATE_RUNNING is cleared at this point).
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: i2c: cros-ec-tunnel: defer probe if parent EC is not present When i2c-cros-ec-tunnel and the EC driver are built-in, the EC parent device will not be found, leading to NULL pointer dereference. That can also be reproduced by unbinding the controller driver and then loading i2c-cros-ec-tunnel module (or binding the device). [ 271.991245] BUG: kernel NULL pointer dereference, address: 0000000000000058 [ 271.998215] #PF: supervisor read access in kernel mode [ 272.003351] #PF: error_code(0x0000) - not-present page [ 272.008485] PGD 0 P4D 0 [ 272.011022] Oops: Oops: 0000 [#1] SMP NOPTI [ 272.015207] CPU: 0 UID: 0 PID: 3859 Comm: insmod Tainted: G S 6.15.0-rc1-00004-g44722359ed83 #30 PREEMPT(full) 3c7fb39a552e7d949de2ad921a7d6588d3a4fdc5 [ 272.030312] Tainted: [S]=CPU_OUT_OF_SPEC [ 272.034233] Hardware name: HP Berknip/Berknip, BIOS Google_Berknip.13434.356.0 05/17/2021 [ 272.042400] RIP: 0010:ec_i2c_probe+0x2b/0x1c0 [i2c_cros_ec_tunnel] [ 272.048577] Code: 1f 44 00 00 41 57 41 56 41 55 41 54 53 48 83 ec 10 65 48 8b 05 06 a0 6c e7 48 89 44 24 08 4c 8d 7f 10 48 8b 47 50 4c 8b 60 78 <49> 83 7c 24 58 00 0f 84 2f 01 00 00 48 89 fb be 30 06 00 00 4c 9 [ 272.067317] RSP: 0018:ffffa32082a03940 EFLAGS: 00010282 [ 272.072541] RAX: ffff969580b6a810 RBX: ffff969580b68c10 RCX: 0000000000000000 [ 272.079672] RDX: 0000000000000000 RSI: 0000000000000282 RDI: ffff969580b68c00 [ 272.086804] RBP: 00000000fffffdfb R08: 0000000000000000 R09: 0000000000000000 [ 272.093936] R10: 0000000000000000 R11: ffffffffc0600000 R12: 0000000000000000 [ 272.101067] R13: ffffffffa666fbb8 R14: ffffffffc05b5528 R15: ffff969580b68c10 [ 272.108198] FS: 00007b930906fc40(0000) GS:ffff969603149000(0000) knlGS:0000000000000000 [ 272.116282] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 272.122024] CR2: 0000000000000058 CR3: 000000012631c000 CR4: 00000000003506f0 [ 272.129155] Call Trace: [ 272.131606] <TASK> [ 272.133709] ? acpi_dev_pm_attach+0xdd/0x110 [ 272.137985] platform_probe+0x69/0xa0 [ 272.141652] really_probe+0x152/0x310 [ 272.145318] __driver_probe_device+0x77/0x110 [ 272.149678] driver_probe_device+0x1e/0x190 [ 272.153864] __driver_attach+0x10b/0x1e0 [ 272.157790] ? driver_attach+0x20/0x20 [ 272.161542] bus_for_each_dev+0x107/0x150 [ 272.165553] bus_add_driver+0x15d/0x270 [ 272.169392] driver_register+0x65/0x110 [ 272.173232] ? cleanup_module+0xa80/0xa80 [i2c_cros_ec_tunnel 3a00532f3f4af4a9eade753f86b0f8dd4e4e5698] [ 272.182617] do_one_initcall+0x110/0x350 [ 272.186543] ? security_kernfs_init_security+0x49/0xd0 [ 272.191682] ? __kernfs_new_node+0x1b9/0x240 [ 272.195954] ? security_kernfs_init_security+0x49/0xd0 [ 272.201093] ? __kernfs_new_node+0x1b9/0x240 [ 272.205365] ? kernfs_link_sibling+0x105/0x130 [ 272.209810] ? kernfs_next_descendant_post+0x1c/0xa0 [ 272.214773] ? kernfs_activate+0x57/0x70 [ 272.218699] ? kernfs_add_one+0x118/0x160 [ 272.222710] ? __kernfs_create_file+0x71/0xa0 [ 272.227069] ? sysfs_add_bin_file_mode_ns+0xd6/0x110 [ 272.232033] ? internal_create_group+0x453/0x4a0 [ 272.236651] ? __vunmap_range_noflush+0x214/0x2d0 [ 272.241355] ? __free_frozen_pages+0x1dc/0x420 [ 272.245799] ? free_vmap_area_noflush+0x10a/0x1c0 [ 272.250505] ? load_module+0x1509/0x16f0 [ 272.254431] do_init_module+0x60/0x230 [ 272.258181] __se_sys_finit_module+0x27a/0x370 [ 272.262627] do_syscall_64+0x6a/0xf0 [ 272.266206] ? do_syscall_64+0x76/0xf0 [ 272.269956] ? irqentry_exit_to_user_mode+0x79/0x90 [ 272.274836] entry_SYSCALL_64_after_hwframe+0x55/0x5d [ 272.279887] RIP: 0033:0x7b9309168d39 [ 272.283466] Code: 5b 41 5c 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d af 40 0c 00 f7 d8 64 89 01 8 [ 272.302210] RSP: 002b:00007fff50f1a288 EFLAGS: 00000246 ORIG_RAX: 000 ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: isofs: Prevent the use of too small fid syzbot reported a slab-out-of-bounds Read in isofs_fh_to_parent. [1] The handle_bytes value passed in by the reproducing program is equal to 12. In handle_to_path(), only 12 bytes of memory are allocated for the structure file_handle->f_handle member, which causes an out-of-bounds access when accessing the member parent_block of the structure isofs_fid in isofs, because accessing parent_block requires at least 16 bytes of f_handle. Here, fh_len is used to indirectly confirm that the value of handle_bytes is greater than 3 before accessing parent_block. [1] BUG: KASAN: slab-out-of-bounds in isofs_fh_to_parent+0x1b8/0x210 fs/isofs/export.c:183 Read of size 4 at addr ffff0000cc030d94 by task syz-executor215/6466 CPU: 1 UID: 0 PID: 6466 Comm: syz-executor215 Not tainted 6.14.0-rc7-syzkaller-ga2392f333575 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Call trace: show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C) __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0xe4/0x150 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0x198/0x550 mm/kasan/report.c:521 kasan_report+0xd8/0x138 mm/kasan/report.c:634 __asan_report_load4_noabort+0x20/0x2c mm/kasan/report_generic.c:380 isofs_fh_to_parent+0x1b8/0x210 fs/isofs/export.c:183 exportfs_decode_fh_raw+0x2dc/0x608 fs/exportfs/expfs.c:523 do_handle_to_path+0xa0/0x198 fs/fhandle.c:257 handle_to_path fs/fhandle.c:385 [inline] do_handle_open+0x8cc/0xb8c fs/fhandle.c:403 __do_sys_open_by_handle_at fs/fhandle.c:443 [inline] __se_sys_open_by_handle_at fs/fhandle.c:434 [inline] __arm64_sys_open_by_handle_at+0x80/0x94 fs/fhandle.c:434 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:744 el0t_64_sync_handler+0x84/0x108 arch/arm64/kernel/entry-common.c:762 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 Allocated by task 6466: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_alloc_info+0x40/0x50 mm/kasan/generic.c:562 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0xac/0xc4 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4294 [inline] __kmalloc_noprof+0x32c/0x54c mm/slub.c:4306 kmalloc_noprof include/linux/slab.h:905 [inline] handle_to_path fs/fhandle.c:357 [inline] do_handle_open+0x5a4/0xb8c fs/fhandle.c:403 __do_sys_open_by_handle_at fs/fhandle.c:443 [inline] __se_sys_open_by_handle_at fs/fhandle.c:434 [inline] __arm64_sys_open_by_handle_at+0x80/0x94 fs/fhandle.c:434 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:744 el0t_64_sync_handler+0x84/0x108 arch/arm64/kernel/entry-common.c:762 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
CVSS Score
7.1
EPSS Score
0.0
Published
2025-05-01


Contact Us

Shodan ® - All rights reserved