In the Linux kernel, the following vulnerability has been resolved:
regulator: check that dummy regulator has been probed before using it
Due to asynchronous driver probing there is a chance that the dummy
regulator hasn't already been probed when first accessing it.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix error code in chan_alloc_skb_cb()
The chan_alloc_skb_cb() function is supposed to return error pointers on
error. Returning NULL will lead to a NULL dereference.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix uninitialized size issue in radeon_vce_cs_parse()
On the off chance that command stream passed from userspace via
ioctl() call to radeon_vce_cs_parse() is weirdly crafted and
first command to execute is to encode (case 0x03000001), the function
in question will attempt to call radeon_vce_cs_reloc() with size
argument that has not been properly initialized. Specifically, 'size'
will point to 'tmp' variable before the latter had a chance to be
assigned any value.
Play it safe and init 'tmp' with 0, thus ensuring that
radeon_vce_cs_reloc() will catch an early error in cases like these.
Found by Linux Verification Center (linuxtesting.org) with static
analysis tool SVACE.
(cherry picked from commit 2d52de55f9ee7aaee0e09ac443f77855989c6b68)
In the Linux kernel, the following vulnerability has been resolved:
proc: fix UAF in proc_get_inode()
Fix race between rmmod and /proc/XXX's inode instantiation.
The bug is that pde->proc_ops don't belong to /proc, it belongs to a
module, therefore dereferencing it after /proc entry has been registered
is a bug unless use_pde/unuse_pde() pair has been used.
use_pde/unuse_pde can be avoided (2 atomic ops!) because pde->proc_ops
never changes so information necessary for inode instantiation can be
saved _before_ proc_register() in PDE itself and used later, avoiding
pde->proc_ops->... dereference.
rmmod lookup
sys_delete_module
proc_lookup_de
pde_get(de);
proc_get_inode(dir->i_sb, de);
mod->exit()
proc_remove
remove_proc_subtree
proc_entry_rundown(de);
free_module(mod);
if (S_ISREG(inode->i_mode))
if (de->proc_ops->proc_read_iter)
--> As module is already freed, will trigger UAF
BUG: unable to handle page fault for address: fffffbfff80a702b
PGD 817fc4067 P4D 817fc4067 PUD 817fc0067 PMD 102ef4067 PTE 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 26 UID: 0 PID: 2667 Comm: ls Tainted: G
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:proc_get_inode+0x302/0x6e0
RSP: 0018:ffff88811c837998 EFLAGS: 00010a06
RAX: dffffc0000000000 RBX: ffffffffc0538140 RCX: 0000000000000007
RDX: 1ffffffff80a702b RSI: 0000000000000001 RDI: ffffffffc0538158
RBP: ffff8881299a6000 R08: 0000000067bbe1e5 R09: 1ffff11023906f20
R10: ffffffffb560ca07 R11: ffffffffb2b43a58 R12: ffff888105bb78f0
R13: ffff888100518048 R14: ffff8881299a6004 R15: 0000000000000001
FS: 00007f95b9686840(0000) GS:ffff8883af100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffbfff80a702b CR3: 0000000117dd2000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
proc_lookup_de+0x11f/0x2e0
__lookup_slow+0x188/0x350
walk_component+0x2ab/0x4f0
path_lookupat+0x120/0x660
filename_lookup+0x1ce/0x560
vfs_statx+0xac/0x150
__do_sys_newstat+0x96/0x110
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[adobriyan@gmail.com: don't do 2 atomic ops on the common path]
In the Linux kernel, the following vulnerability has been resolved:
net: atm: fix use after free in lec_send()
The ->send() operation frees skb so save the length before calling
->send() to avoid a use after free.
In the Linux kernel, the following vulnerability has been resolved:
HID: ignore non-functional sensor in HP 5MP Camera
The HP 5MP Camera (USB ID 0408:5473) reports a HID sensor interface that
is not actually implemented. Attempting to access this non-functional
sensor via iio_info causes system hangs as runtime PM tries to wake up
an unresponsive sensor.
[453] hid-sensor-hub 0003:0408:5473.0003: Report latency attributes: ffffffff:ffffffff
[453] hid-sensor-hub 0003:0408:5473.0003: common attributes: 5:1, 2:1, 3:1 ffffffff:ffffffff
Add this device to the HID ignore list since the sensor interface is
non-functional by design and should not be exposed to userspace.
In the Linux kernel, the following vulnerability has been resolved:
iscsi_ibft: Fix UBSAN shift-out-of-bounds warning in ibft_attr_show_nic()
When performing an iSCSI boot using IPv6, iscsistart still reads the
/sys/firmware/ibft/ethernetX/subnet-mask entry. Since the IPv6 prefix
length is 64, this causes the shift exponent to become negative,
triggering a UBSAN warning. As the concept of a subnet mask does not
apply to IPv6, the value is set to ~0 to suppress the warning message.
In the Linux kernel, the following vulnerability has been resolved:
net_sched: Prevent creation of classes with TC_H_ROOT
The function qdisc_tree_reduce_backlog() uses TC_H_ROOT as a termination
condition when traversing up the qdisc tree to update parent backlog
counters. However, if a class is created with classid TC_H_ROOT, the
traversal terminates prematurely at this class instead of reaching the
actual root qdisc, causing parent statistics to be incorrectly maintained.
In case of DRR, this could lead to a crash as reported by Mingi Cho.
Prevent the creation of any Qdisc class with classid TC_H_ROOT
(0xFFFFFFFF) across all qdisc types, as suggested by Jamal.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: hyperv_fb: Allow graceful removal of framebuffer
When a Hyper-V framebuffer device is unbind, hyperv_fb driver tries to
release the framebuffer forcefully. If this framebuffer is in use it
produce the following WARN and hence this framebuffer is never released.
[ 44.111220] WARNING: CPU: 35 PID: 1882 at drivers/video/fbdev/core/fb_info.c:70 framebuffer_release+0x2c/0x40
< snip >
[ 44.111289] Call Trace:
[ 44.111290] <TASK>
[ 44.111291] ? show_regs+0x6c/0x80
[ 44.111295] ? __warn+0x8d/0x150
[ 44.111298] ? framebuffer_release+0x2c/0x40
[ 44.111300] ? report_bug+0x182/0x1b0
[ 44.111303] ? handle_bug+0x6e/0xb0
[ 44.111306] ? exc_invalid_op+0x18/0x80
[ 44.111308] ? asm_exc_invalid_op+0x1b/0x20
[ 44.111311] ? framebuffer_release+0x2c/0x40
[ 44.111313] ? hvfb_remove+0x86/0xa0 [hyperv_fb]
[ 44.111315] vmbus_remove+0x24/0x40 [hv_vmbus]
[ 44.111323] device_remove+0x40/0x80
[ 44.111325] device_release_driver_internal+0x20b/0x270
[ 44.111327] ? bus_find_device+0xb3/0xf0
Fix this by moving the release of framebuffer and assosiated memory
to fb_ops.fb_destroy function, so that framebuffer framework handles
it gracefully.
While we fix this, also replace manual registrations/unregistration of
framebuffer with devm_register_framebuffer.