In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kmemleak warning for percpu hashmap
Vlad Poenaru reported the following kmemleak issue:
unreferenced object 0x606fd7c44ac8 (size 32):
backtrace (crc 0):
pcpu_alloc_noprof+0x730/0xeb0
bpf_map_alloc_percpu+0x69/0xc0
prealloc_init+0x9d/0x1b0
htab_map_alloc+0x363/0x510
map_create+0x215/0x3a0
__sys_bpf+0x16b/0x3e0
__x64_sys_bpf+0x18/0x20
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Further investigation shows the reason is due to not 8-byte aligned
store of percpu pointer in htab_elem_set_ptr():
*(void __percpu **)(l->key + key_size) = pptr;
Note that the whole htab_elem alignment is 8 (for x86_64). If the key_size
is 4, that means pptr is stored in a location which is 4 byte aligned but
not 8 byte aligned. In mm/kmemleak.c, scan_block() scans the memory based
on 8 byte stride, so it won't detect above pptr, hence reporting the memory
leak.
In htab_map_alloc(), we already have
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
if (percpu)
htab->elem_size += sizeof(void *);
else
htab->elem_size += round_up(htab->map.value_size, 8);
So storing pptr with 8-byte alignment won't cause any problem and can fix
kmemleak too.
The issue can be reproduced with bpf selftest as well:
1. Enable CONFIG_DEBUG_KMEMLEAK config
2. Add a getchar() before skel destroy in test_hash_map() in prog_tests/for_each.c.
The purpose is to keep map available so kmemleak can be detected.
3. run './test_progs -t for_each/hash_map &' and a kmemleak should be reported.
In the Linux kernel, the following vulnerability has been resolved:
crypto: null - Use spin lock instead of mutex
As the null algorithm may be freed in softirq context through
af_alg, use spin locks instead of mutexes to protect the default
null algorithm.
In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential NULL pointer dereference in dev_uevent()
If userspace reads "uevent" device attribute at the same time as another
threads unbinds the device from its driver, change to dev->driver from a
valid pointer to NULL may result in crash. Fix this by using READ_ONCE()
when fetching the pointer, and take bus' drivers klist lock to make sure
driver instance will not disappear while we access it.
Use WRITE_ONCE() when setting the driver pointer to ensure there is no
tearing.
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix WRITE_SAME No Data Buffer crash
In newer version of the SBC specs, we have a NDOB bit that indicates there
is no data buffer that gets written out. If this bit is set using commands
like "sg_write_same --ndob" we will crash in target_core_iblock/file's
execute_write_same handlers when we go to access the se_cmd->t_data_sg
because its NULL.
This patch adds a check for the NDOB bit in the common WRITE SAME code
because we don't support it. And, it adds a check for zero SG elements in
each handler in case the initiator tries to send a normal WRITE SAME with
no data buffer.
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix a server shutdown leak
Fix a race where kthread_stop() may prevent the threadfn from ever getting
called. If that happens the svc_rqst will not be cleaned up.
In the Linux kernel, the following vulnerability has been resolved:
loop: Fix use-after-free issues
do_req_filebacked() calls blk_mq_complete_request() synchronously or
asynchronously when using asynchronous I/O unless memory allocation fails.
Hence, modify loop_handle_cmd() such that it does not dereference 'cmd' nor
'rq' after do_req_filebacked() finished unless we are sure that the request
has not yet been completed. This patch fixes the following kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000054
Call trace:
css_put.42938+0x1c/0x1ac
loop_process_work+0xc8c/0xfd4
loop_rootcg_workfn+0x24/0x34
process_one_work+0x244/0x558
worker_thread+0x400/0x8fc
kthread+0x16c/0x1e0
ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix a procfs host directory removal regression
scsi_proc_hostdir_rm() decreases a reference counter and hence must only be
called once per host that is removed. This change does not require a
scsi_add_host_with_dma() change since scsi_add_host_with_dma() will return
0 (success) if scsi_proc_host_add() is called.
In the Linux kernel, the following vulnerability has been resolved:
bonding: restore bond's IFF_SLAVE flag if a non-eth dev enslave fails
syzbot reported a warning[1] where the bond device itself is a slave and
we try to enslave a non-ethernet device as the first slave which fails
but then in the error path when ether_setup() restores the bond device
it also clears all flags. In my previous fix[2] I restored the
IFF_MASTER flag, but I didn't consider the case that the bond device
itself might also be a slave with IFF_SLAVE set, so we need to restore
that flag as well. Use the bond_ether_setup helper which does the right
thing and restores the bond's flags properly.
Steps to reproduce using a nlmon dev:
$ ip l add nlmon0 type nlmon
$ ip l add bond1 type bond
$ ip l add bond2 type bond
$ ip l set bond1 master bond2
$ ip l set dev nlmon0 master bond1
$ ip -d l sh dev bond1
22: bond1: <BROADCAST,MULTICAST,MASTER> mtu 1500 qdisc noqueue master bond2 state DOWN mode DEFAULT group default qlen 1000
(now bond1's IFF_SLAVE flag is gone and we'll hit a warning[3] if we
try to delete it)
[1] https://syzkaller.appspot.com/bug?id=391c7b1f6522182899efba27d891f1743e8eb3ef
[2] commit 7d5cd2ce5292 ("bonding: correctly handle bonding type change on enslave failure")
[3] example warning:
[ 27.008664] bond1: (slave nlmon0): The slave device specified does not support setting the MAC address
[ 27.008692] bond1: (slave nlmon0): Error -95 calling set_mac_address
[ 32.464639] bond1 (unregistering): Released all slaves
[ 32.464685] ------------[ cut here ]------------
[ 32.464686] WARNING: CPU: 1 PID: 2004 at net/core/dev.c:10829 unregister_netdevice_many+0x72a/0x780
[ 32.464694] Modules linked in: br_netfilter bridge bonding virtio_net
[ 32.464699] CPU: 1 PID: 2004 Comm: ip Kdump: loaded Not tainted 5.18.0-rc3+ #47
[ 32.464703] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.1-2.fc37 04/01/2014
[ 32.464704] RIP: 0010:unregister_netdevice_many+0x72a/0x780
[ 32.464707] Code: 99 fd ff ff ba 90 1a 00 00 48 c7 c6 f4 02 66 96 48 c7 c7 20 4d 35 96 c6 05 fa c7 2b 02 01 e8 be 6f 4a 00 0f 0b e9 73 fd ff ff <0f> 0b e9 5f fd ff ff 80 3d e3 c7 2b 02 00 0f 85 3b fd ff ff ba 59
[ 32.464710] RSP: 0018:ffffa006422d7820 EFLAGS: 00010206
[ 32.464712] RAX: ffff8f6e077140a0 RBX: ffffa006422d7888 RCX: 0000000000000000
[ 32.464714] RDX: ffff8f6e12edbe58 RSI: 0000000000000296 RDI: ffffffff96d4a520
[ 32.464716] RBP: ffff8f6e07714000 R08: ffffffff96d63600 R09: ffffa006422d7728
[ 32.464717] R10: 0000000000000ec0 R11: ffffffff9698c988 R12: ffff8f6e12edb140
[ 32.464719] R13: dead000000000122 R14: dead000000000100 R15: ffff8f6e12edb140
[ 32.464723] FS: 00007f297c2f1740(0000) GS:ffff8f6e5d900000(0000) knlGS:0000000000000000
[ 32.464725] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 32.464726] CR2: 00007f297bf1c800 CR3: 00000000115e8000 CR4: 0000000000350ee0
[ 32.464730] Call Trace:
[ 32.464763] <TASK>
[ 32.464767] rtnl_dellink+0x13e/0x380
[ 32.464776] ? cred_has_capability.isra.0+0x68/0x100
[ 32.464780] ? __rtnl_unlock+0x33/0x60
[ 32.464783] ? bpf_lsm_capset+0x10/0x10
[ 32.464786] ? security_capable+0x36/0x50
[ 32.464790] rtnetlink_rcv_msg+0x14e/0x3b0
[ 32.464792] ? _copy_to_iter+0xb1/0x790
[ 32.464796] ? post_alloc_hook+0xa0/0x160
[ 32.464799] ? rtnl_calcit.isra.0+0x110/0x110
[ 32.464802] netlink_rcv_skb+0x50/0xf0
[ 32.464806] netlink_unicast+0x216/0x340
[ 32.464809] netlink_sendmsg+0x23f/0x480
[ 32.464812] sock_sendmsg+0x5e/0x60
[ 32.464815] ____sys_sendmsg+0x22c/0x270
[ 32.464818] ? import_iovec+0x17/0x20
[ 32.464821] ? sendmsg_copy_msghdr+0x59/0x90
[ 32.464823] ? do_set_pte+0xa0/0xe0
[ 32.464828] ___sys_sendmsg+0x81/0xc0
[ 32.464832] ? mod_objcg_state+0xc6/0x300
[ 32.464835] ? refill_obj_stock+0xa9/0x160
[ 32.464838] ? memcg_slab_free_hook+0x1a5/0x1f0
[ 32.464842] __sys_sendm
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ext4: update s_journal_inum if it changes after journal replay
When mounting a crafted ext4 image, s_journal_inum may change after journal
replay, which is obviously unreasonable because we have successfully loaded
and replayed the journal through the old s_journal_inum. And the new
s_journal_inum bypasses some of the checks in ext4_get_journal(), which
may trigger a null pointer dereference problem. So if s_journal_inum
changes after the journal replay, we ignore the change, and rewrite the
current journal_inum to the superblock.