Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.298  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: xen/privcmd: fix error exit of privcmd_ioctl_dm_op() The error exit of privcmd_ioctl_dm_op() is calling unlock_pages() potentially with pages being NULL, leading to a NULL dereference. Additionally lock_pages() doesn't check for pin_user_pages_fast() having been completely successful, resulting in potentially not locking all pages into memory. This could result in sporadic failures when using the related memory in user mode. Fix all of that by calling unlock_pages() always with the real number of pinned pages, which will be zero in case pages being NULL, and by checking the number of pages pinned by pin_user_pages_fast() matching the expected number of pages.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: s390: fix double free of GS and RI CBs on fork() failure The pointers for guarded storage and runtime instrumentation control blocks are stored in the thread_struct of the associated task. These pointers are initially copied on fork() via arch_dup_task_struct() and then cleared via copy_thread() before fork() returns. If fork() happens to fail after the initial task dup and before copy_thread(), the newly allocated task and associated thread_struct memory are freed via free_task() -> arch_release_task_struct(). This results in a double free of the guarded storage and runtime info structs because the fields in the failed task still refer to memory associated with the source task. This problem can manifest as a BUG_ON() in set_freepointer() (with CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled) when running trinity syscall fuzz tests on s390x. To avoid this problem, clear the associated pointer fields in arch_dup_task_struct() immediately after the new task is copied. Note that the RI flag is still cleared in copy_thread() because it resides in thread stack memory and that is where stack info is copied.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: net: fix refcount bug in sk_psock_get (2) Syzkaller reports refcount bug as follows: ------------[ cut here ]------------ refcount_t: saturated; leaking memory. WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19 Modules linked in: CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0 <TASK> __refcount_add_not_zero include/linux/refcount.h:163 [inline] __refcount_inc_not_zero include/linux/refcount.h:227 [inline] refcount_inc_not_zero include/linux/refcount.h:245 [inline] sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439 tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091 tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983 tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057 tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659 tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2849 release_sock+0x54/0x1b0 net/core/sock.c:3404 inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909 __sys_shutdown_sock net/socket.c:2331 [inline] __sys_shutdown_sock net/socket.c:2325 [inline] __sys_shutdown+0xf1/0x1b0 net/socket.c:2343 __do_sys_shutdown net/socket.c:2351 [inline] __se_sys_shutdown net/socket.c:2349 [inline] __x64_sys_shutdown+0x50/0x70 net/socket.c:2349 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> During SMC fallback process in connect syscall, kernel will replaces TCP with SMC. In order to forward wakeup smc socket waitqueue after fallback, kernel will sets clcsk->sk_user_data to origin smc socket in smc_fback_replace_callbacks(). Later, in shutdown syscall, kernel will calls sk_psock_get(), which treats the clcsk->sk_user_data as psock type, triggering the refcnt warning. So, the root cause is that smc and psock, both will use sk_user_data field. So they will mismatch this field easily. This patch solves it by using another bit(defined as SK_USER_DATA_PSOCK) in PTRMASK, to mark whether sk_user_data points to a psock object or not. This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e ("net, sk_msg: Clear sk_user_data pointer on clone if tagged"). For there will possibly be more flags in the sk_user_data field, this patch also refactor sk_user_data flags code to be more generic to improve its maintainability.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix use-after-free Read in usb_udc_uevent() The syzbot fuzzer found a race between uevent callbacks and gadget driver unregistration that can cause a use-after-free bug: --------------------------------------------------------------- BUG: KASAN: use-after-free in usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732 Read of size 8 at addr ffff888078ce2050 by task udevd/2968 CPU: 1 PID: 2968 Comm: udevd Not tainted 5.19.0-rc4-next-20220628-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/29/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:317 [inline] print_report.cold+0x2ba/0x719 mm/kasan/report.c:433 kasan_report+0xbe/0x1f0 mm/kasan/report.c:495 usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732 dev_uevent+0x290/0x770 drivers/base/core.c:2424 --------------------------------------------------------------- The bug occurs because usb_udc_uevent() dereferences udc->driver but does so without acquiring the udc_lock mutex, which protects this field. If the gadget driver is unbound from the udc concurrently with uevent processing, the driver structure may be accessed after it has been deallocated. To prevent the race, we make sure that the routine holds the mutex around the racing accesses.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a data-race around bpf_jit_limit. While reading bpf_jit_limit, it can be changed concurrently via sysctl, WRITE_ONCE() in __do_proc_doulongvec_minmax(). The size of bpf_jit_limit is long, so we need to add a paired READ_ONCE() to avoid load-tearing.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: bpf: Don't redirect packets with invalid pkt_len Syzbot found an issue [1]: fq_codel_drop() try to drop a flow whitout any skbs, that is, the flow->head is null. The root cause, as the [2] says, is because that bpf_prog_test_run_skb() run a bpf prog which redirects empty skbs. So we should determine whether the length of the packet modified by bpf prog or others like bpf_prog_test is valid before forwarding it directly.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: Input: iforce - wake up after clearing IFORCE_XMIT_RUNNING flag syzbot is reporting hung task at __input_unregister_device() [1], for iforce_close() waiting at wait_event_interruptible() with dev->mutex held is blocking input_disconnect_device() from __input_unregister_device(). It seems that the cause is simply that commit c2b27ef672992a20 ("Input: iforce - wait for command completion when closing the device") forgot to call wake_up() after clear_bit(). Fix this problem by introducing a helper that calls clear_bit() followed by wake_up_all().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: kcm: fix strp_init() order and cleanup strp_init() is called just a few lines above this csk->sk_user_data check, it also initializes strp->work etc., therefore, it is unnecessary to call strp_done() to cancel the freshly initialized work. And if sk_user_data is already used by KCM, psock->strp should not be touched, particularly strp->work state, so we need to move strp_init() after the csk->sk_user_data check. This also makes a lockdep warning reported by syzbot go away.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: media: mceusb: Use new usb_control_msg_*() routines Automatic kernel fuzzing led to a WARN about invalid pipe direction in the mceusb driver: ------------[ cut here ]------------ usb 6-1: BOGUS control dir, pipe 80000380 doesn't match bRequestType 40 WARNING: CPU: 0 PID: 2465 at drivers/usb/core/urb.c:410 usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410 Modules linked in: CPU: 0 PID: 2465 Comm: kworker/0:2 Not tainted 5.19.0-rc4-00208-g69cb6c6556ad #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410 Code: 7c 24 40 e8 ac 23 91 fd 48 8b 7c 24 40 e8 b2 70 1b ff 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 a0 30 a9 86 e8 48 07 11 02 <0f> 0b e9 1c f0 ff ff e8 7e 23 91 fd 0f b6 1d 63 22 83 05 31 ff 41 RSP: 0018:ffffc900032becf0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8881100f3058 RCX: 0000000000000000 RDX: ffffc90004961000 RSI: ffff888114c6d580 RDI: fffff52000657d90 RBP: ffff888105ad90f0 R08: ffffffff812c3638 R09: 0000000000000000 R10: 0000000000000005 R11: ffffed1023504ef1 R12: ffff888105ad9000 R13: 0000000000000040 R14: 0000000080000380 R15: ffff88810ba96500 FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe810bda58 CR3: 000000010b720000 CR4: 0000000000350ef0 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4c0 drivers/usb/core/message.c:58 usb_internal_control_msg drivers/usb/core/message.c:102 [inline] usb_control_msg+0x31c/0x4a0 drivers/usb/core/message.c:153 mceusb_gen1_init drivers/media/rc/mceusb.c:1431 [inline] mceusb_dev_probe+0x258e/0x33f0 drivers/media/rc/mceusb.c:1807 The reason for the warning is clear enough; the driver sends an unusual read request on endpoint 0 but does not set the USB_DIR_IN bit in the bRequestType field. More importantly, the whole situation can be avoided and the driver simplified by converting it over to the relatively new usb_control_msg_recv() and usb_control_msg_send() routines. That's what this fix does.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: cifs: fix small mempool leak in SMB2_negotiate() In some cases of failure (dialect mismatches) in SMB2_negotiate(), after the request is sent, the checks would return -EIO when they should be rather setting rc = -EIO and jumping to neg_exit to free the response buffer from mempool.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18


Contact Us

Shodan ® - All rights reserved