In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix validation of block size
Block size should be between 512 and PAGE_SIZE and be a power of 2. The current
check does not validate this, so update the check.
Without this patch, null_blk would Oops due to a null pointer deref when
loaded with bs=1536 [1].
[axboe: remove unnecessary braces and != 0 check]
In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix possible deadlock in io_register_iowq_max_workers()
The io_register_iowq_max_workers() function calls io_put_sq_data(),
which acquires the sqd->lock without releasing the uring_lock.
Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock
before acquiring sqd->lock"), this can lead to a potential deadlock
situation.
To resolve this issue, the uring_lock is released before calling
io_put_sq_data(), and then it is re-acquired after the function call.
This change ensures that the locks are acquired in the correct
order, preventing the possibility of a deadlock.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check bo_va->bo is non-NULL before using it
The call to radeon_vm_clear_freed might clear bo_va->bo, so
we have to check it before dereferencing it.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: cancel all works upon hci_unregister_dev()
syzbot is reporting that calling hci_release_dev() from hci_error_reset()
due to hci_dev_put() from hci_error_reset() can cause deadlock at
destroy_workqueue(), for hci_error_reset() is called from
hdev->req_workqueue which destroy_workqueue() needs to flush.
We need to make sure that hdev->{rx_work,cmd_work,tx_work} which are
queued into hdev->workqueue and hdev->{power_on,error_reset} which are
queued into hdev->req_workqueue are no longer running by the moment
destroy_workqueue(hdev->workqueue);
destroy_workqueue(hdev->req_workqueue);
are called from hci_release_dev().
Call cancel_work_sync() on these work items from hci_unregister_dev()
as soon as hdev->list is removed from hci_dev_list.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/eeh: avoid possible crash when edev->pdev changes
If a PCI device is removed during eeh_pe_report_edev(), edev->pdev
will change and can cause a crash, hold the PCI rescan/remove lock
while taking a copy of edev->pdev->bus.
In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems.
In the Linux kernel, the following vulnerability has been resolved:
KVM: PPC: Book3S HV: Prevent UAF in kvm_spapr_tce_attach_iommu_group()
Al reported a possible use-after-free (UAF) in kvm_spapr_tce_attach_iommu_group().
It looks up `stt` from tablefd, but then continues to use it after doing
fdput() on the returned fd. After the fdput() the tablefd is free to be
closed by another thread. The close calls kvm_spapr_tce_release() and
then release_spapr_tce_table() (via call_rcu()) which frees `stt`.
Although there are calls to rcu_read_lock() in
kvm_spapr_tce_attach_iommu_group() they are not sufficient to prevent
the UAF, because `stt` is used outside the locked regions.
With an artifcial delay after the fdput() and a userspace program which
triggers the race, KASAN detects the UAF:
BUG: KASAN: slab-use-after-free in kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
Read of size 4 at addr c000200027552c30 by task kvm-vfio/2505
CPU: 54 PID: 2505 Comm: kvm-vfio Not tainted 6.10.0-rc3-next-20240612-dirty #1
Hardware name: 8335-GTH POWER9 0x4e1202 opal:skiboot-v6.5.3-35-g1851b2a06 PowerNV
Call Trace:
dump_stack_lvl+0xb4/0x108 (unreliable)
print_report+0x2b4/0x6ec
kasan_report+0x118/0x2b0
__asan_load4+0xb8/0xd0
kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
kvm_vfio_set_attr+0x524/0xac0 [kvm]
kvm_device_ioctl+0x144/0x240 [kvm]
sys_ioctl+0x62c/0x1810
system_call_exception+0x190/0x440
system_call_vectored_common+0x15c/0x2ec
...
Freed by task 0:
...
kfree+0xec/0x3e0
release_spapr_tce_table+0xd4/0x11c [kvm]
rcu_core+0x568/0x16a0
handle_softirqs+0x23c/0x920
do_softirq_own_stack+0x6c/0x90
do_softirq_own_stack+0x58/0x90
__irq_exit_rcu+0x218/0x2d0
irq_exit+0x30/0x80
arch_local_irq_restore+0x128/0x230
arch_local_irq_enable+0x1c/0x30
cpuidle_enter_state+0x134/0x5cc
cpuidle_enter+0x6c/0xb0
call_cpuidle+0x7c/0x100
do_idle+0x394/0x410
cpu_startup_entry+0x60/0x70
start_secondary+0x3fc/0x410
start_secondary_prolog+0x10/0x14
Fix it by delaying the fdput() until `stt` is no longer in use, which
is effectively the entire function. To keep the patch minimal add a call
to fdput() at each of the existing return paths. Future work can convert
the function to goto or __cleanup style cleanup.
With the fix in place the test case no longer triggers the UAF.
In the Linux kernel, the following vulnerability has been resolved:
xfs: add bounds checking to xlog_recover_process_data
There is a lack of verification of the space occupied by fixed members
of xlog_op_header in the xlog_recover_process_data.
We can create a crafted image to trigger an out of bounds read by
following these steps:
1) Mount an image of xfs, and do some file operations to leave records
2) Before umounting, copy the image for subsequent steps to simulate
abnormal exit. Because umount will ensure that tail_blk and
head_blk are the same, which will result in the inability to enter
xlog_recover_process_data
3) Write a tool to parse and modify the copied image in step 2
4) Make the end of the xlog_op_header entries only 1 byte away from
xlog_rec_header->h_size
5) xlog_rec_header->h_num_logops++
6) Modify xlog_rec_header->h_crc
Fix:
Add a check to make sure there is sufficient space to access fixed members
of xlog_op_header.