In the Linux kernel, the following vulnerability has been resolved:
sfc: fix NULL dereferences in ef100_process_design_param()
Since cited commit, ef100_probe_main() and hence also
ef100_check_design_params() run before efx->net_dev is created;
consequently, we cannot netif_set_tso_max_size() or _segs() at this
point.
Move those netif calls to ef100_probe_netdev(), and also replace
netif_err within the design params code with pci_err.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Fix off-by-one error in build_prologue()
Vincent reported that running BPF progs with tailcalls on LoongArch
causes kernel hard lockup. Debugging the issues shows that the JITed
image missing a jirl instruction at the end of the epilogue.
There are two passes in JIT compiling, the first pass set the flags and
the second pass generates JIT code based on those flags. With BPF progs
mixing bpf2bpf and tailcalls, build_prologue() generates N insns in the
first pass and then generates N+1 insns in the second pass. This makes
epilogue_offset off by one and we will jump to some unexpected insn and
cause lockup. Fix this by inserting a nop insn.
In the Linux kernel, the following vulnerability has been resolved:
watch_queue: fix pipe accounting mismatch
Currently, watch_queue_set_size() modifies the pipe buffers charged to
user->pipe_bufs without updating the pipe->nr_accounted on the pipe
itself, due to the if (!pipe_has_watch_queue()) test in
pipe_resize_ring(). This means that when the pipe is ultimately freed,
we decrement user->pipe_bufs by something other than what than we had
charged to it, potentially leading to an underflow. This in turn can
cause subsequent too_many_pipe_buffers_soft() tests to fail with -EPERM.
To remedy this, explicitly account for the pipe usage in
watch_queue_set_size() to match the number set via account_pipe_buffers()
(It's unclear why watch_queue_set_size() does not update nr_accounted;
it may be due to intentional overprovisioning in watch_queue_set_size()?)
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Clear affinity hint before calling ath11k_pcic_free_irq() in error path
If a shared IRQ is used by the driver due to platform limitation, then the
IRQ affinity hint is set right after the allocation of IRQ vectors in
ath11k_pci_alloc_msi(). This does no harm unless one of the functions
requesting the IRQ fails and attempt to free the IRQ. This results in the
below warning:
WARNING: CPU: 7 PID: 349 at kernel/irq/manage.c:1929 free_irq+0x278/0x29c
Call trace:
free_irq+0x278/0x29c
ath11k_pcic_free_irq+0x70/0x10c [ath11k]
ath11k_pci_probe+0x800/0x820 [ath11k_pci]
local_pci_probe+0x40/0xbc
The warning is due to not clearing the affinity hint before freeing the
IRQs.
So to fix this issue, clear the IRQ affinity hint before calling
ath11k_pcic_free_irq() in the error path. The affinity will be cleared once
again further down the error path due to code organization, but that does
no harm.
Tested-on: QCA6390 hw2.0 PCI WLAN.HST.1.0.1-05266-QCAHSTSWPLZ_V2_TO_X86-1
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid panic once fallocation fails for pinfile
syzbot reports a f2fs bug as below:
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.c:2746!
CPU: 0 UID: 0 PID: 5323 Comm: syz.0.0 Not tainted 6.13.0-rc2-syzkaller-00018-g7cb1b4663150 #0
RIP: 0010:get_new_segment fs/f2fs/segment.c:2746 [inline]
RIP: 0010:new_curseg+0x1f52/0x1f70 fs/f2fs/segment.c:2876
Call Trace:
<TASK>
__allocate_new_segment+0x1ce/0x940 fs/f2fs/segment.c:3210
f2fs_allocate_new_section fs/f2fs/segment.c:3224 [inline]
f2fs_allocate_pinning_section+0xfa/0x4e0 fs/f2fs/segment.c:3238
f2fs_expand_inode_data+0x696/0xca0 fs/f2fs/file.c:1830
f2fs_fallocate+0x537/0xa10 fs/f2fs/file.c:1940
vfs_fallocate+0x569/0x6e0 fs/open.c:327
do_vfs_ioctl+0x258c/0x2e40 fs/ioctl.c:885
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x80/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Concurrent pinfile allocation may run out of free section, result in
panic in get_new_segment(), let's expand pin_sem lock coverage to
include f2fs_gc(), so that we can make sure to reclaim enough free
space for following allocation.
In addition, do below changes to enhance error path handling:
- call f2fs_bug_on() only in non-pinfile allocation path in
get_new_segment().
- call reset_curseg_fields() to reset all fields of curseg in
new_curseg()
In the Linux kernel, the following vulnerability has been resolved:
dlm: prevent NPD when writing a positive value to event_done
do_uevent returns the value written to event_done. In case it is a
positive value, new_lockspace would undo all the work, and lockspace
would not be set. __dlm_new_lockspace, however, would treat that
positive value as a success due to commit 8511a2728ab8 ("dlm: fix use
count with multiple joins").
Down the line, device_create_lockspace would pass that NULL lockspace to
dlm_find_lockspace_local, leading to a NULL pointer dereference.
Treating such positive values as successes prevents the problem. Given
this has been broken for so long, this is unlikely to break userspace
expectations.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: quota: fix to avoid warning in dquot_writeback_dquots()
F2FS-fs (dm-59): checkpoint=enable has some unwritten data.
------------[ cut here ]------------
WARNING: CPU: 6 PID: 8013 at fs/quota/dquot.c:691 dquot_writeback_dquots+0x2fc/0x308
pc : dquot_writeback_dquots+0x2fc/0x308
lr : f2fs_quota_sync+0xcc/0x1c4
Call trace:
dquot_writeback_dquots+0x2fc/0x308
f2fs_quota_sync+0xcc/0x1c4
f2fs_write_checkpoint+0x3d4/0x9b0
f2fs_issue_checkpoint+0x1bc/0x2c0
f2fs_sync_fs+0x54/0x150
f2fs_do_sync_file+0x2f8/0x814
__f2fs_ioctl+0x1960/0x3244
f2fs_ioctl+0x54/0xe0
__arm64_sys_ioctl+0xa8/0xe4
invoke_syscall+0x58/0x114
checkpoint and f2fs_remount may race as below, resulting triggering warning
in dquot_writeback_dquots().
atomic write remount
- do_remount
- down_write(&sb->s_umount);
- f2fs_remount
- ioctl
- f2fs_do_sync_file
- f2fs_sync_fs
- f2fs_write_checkpoint
- block_operations
- locked = down_read_trylock(&sbi->sb->s_umount)
: fail to lock due to the write lock was held by remount
- up_write(&sb->s_umount);
- f2fs_quota_sync
- dquot_writeback_dquots
- WARN_ON_ONCE(!rwsem_is_locked(&sb->s_umount))
: trigger warning because s_umount lock was unlocked by remount
If checkpoint comes from mount/umount/remount/freeze/quotactl, caller of
checkpoint has already held s_umount lock, calling dquot_writeback_dquots()
in the context should be safe.
So let's record task to sbi->umount_lock_holder, so that checkpoint can
know whether the lock has held in the context or not by checking current
w/ it.
In addition, in order to not misrepresent caller of checkpoint, we should
not allow to trigger async checkpoint for those callers: mount/umount/remount/
freeze/quotactl.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: update channel list in reg notifier instead reg worker
Currently when ath11k gets a new channel list, it will be processed
according to the following steps:
1. update new channel list to cfg80211 and queue reg_work.
2. cfg80211 handles new channel list during reg_work.
3. update cfg80211's handled channel list to firmware by
ath11k_reg_update_chan_list().
But ath11k will immediately execute step 3 after reg_work is just
queued. Since step 2 is asynchronous, cfg80211 may not have completed
handling the new channel list, which may leading to an out-of-bounds
write error:
BUG: KASAN: slab-out-of-bounds in ath11k_reg_update_chan_list
Call Trace:
ath11k_reg_update_chan_list+0xbfe/0xfe0 [ath11k]
kfree+0x109/0x3a0
ath11k_regd_update+0x1cf/0x350 [ath11k]
ath11k_regd_update_work+0x14/0x20 [ath11k]
process_one_work+0xe35/0x14c0
Should ensure step 2 is completely done before executing step 3. Thus
Wen raised patch[1]. When flag NL80211_REGDOM_SET_BY_DRIVER is set,
cfg80211 will notify ath11k after step 2 is done.
So enable the flag NL80211_REGDOM_SET_BY_DRIVER then cfg80211 will
notify ath11k after step 2 is done. At this time, there will be no
KASAN bug during the execution of the step 3.
[1] https://patchwork.kernel.org/project/linux-wireless/patch/20230201065313.27203-1-quic_wgong@quicinc.com/
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3
In the Linux kernel, the following vulnerability has been resolved:
thermal: int340x: Add NULL check for adev
Not all devices have an ACPI companion fwnode, so adev might be NULL.
This is similar to the commit cd2fd6eab480
("platform/x86: int3472: Check for adev == NULL").
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in int3402_thermal_probe().
Note, under the same directory, int3400_thermal_probe() has such a
check.
[ rjw: Subject edit, added Fixes: ]