In the Linux kernel, the following vulnerability has been resolved:
ionic: use dev_consume_skb_any outside of napi
If we're not in a NAPI softirq context, we need to be careful
about how we call napi_consume_skb(), specifically we need to
call it with budget==0 to signal to it that we're not in a
safe context.
This was found while running some configuration stress testing
of traffic and a change queue config loop running, and this
curious note popped out:
[ 4371.402645] BUG: using smp_processor_id() in preemptible [00000000] code: ethtool/20545
[ 4371.402897] caller is napi_skb_cache_put+0x16/0x80
[ 4371.403120] CPU: 25 PID: 20545 Comm: ethtool Kdump: loaded Tainted: G OE 6.10.0-rc3-netnext+ #8
[ 4371.403302] Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 01/23/2021
[ 4371.403460] Call Trace:
[ 4371.403613] <TASK>
[ 4371.403758] dump_stack_lvl+0x4f/0x70
[ 4371.403904] check_preemption_disabled+0xc1/0xe0
[ 4371.404051] napi_skb_cache_put+0x16/0x80
[ 4371.404199] ionic_tx_clean+0x18a/0x240 [ionic]
[ 4371.404354] ionic_tx_cq_service+0xc4/0x200 [ionic]
[ 4371.404505] ionic_tx_flush+0x15/0x70 [ionic]
[ 4371.404653] ? ionic_lif_qcq_deinit.isra.23+0x5b/0x70 [ionic]
[ 4371.404805] ionic_txrx_deinit+0x71/0x190 [ionic]
[ 4371.404956] ionic_reconfigure_queues+0x5f5/0xff0 [ionic]
[ 4371.405111] ionic_set_ringparam+0x2e8/0x3e0 [ionic]
[ 4371.405265] ethnl_set_rings+0x1f1/0x300
[ 4371.405418] ethnl_default_set_doit+0xbb/0x160
[ 4371.405571] genl_family_rcv_msg_doit+0xff/0x130
[...]
I found that ionic_tx_clean() calls napi_consume_skb() which calls
napi_skb_cache_put(), but before that last call is the note
/* Zero budget indicate non-NAPI context called us, like netpoll */
and
DEBUG_NET_WARN_ON_ONCE(!in_softirq());
Those are pretty big hints that we're doing it wrong. We can pass a
context hint down through the calls to let ionic_tx_clean() know what
we're doing so it can call napi_consume_skb() correctly.
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_buffers: Fix memory corruptions on Spectrum-4 systems
The following two shared buffer operations make use of the Shared Buffer
Status Register (SBSR):
# devlink sb occupancy snapshot pci/0000:01:00.0
# devlink sb occupancy clearmax pci/0000:01:00.0
The register has two masks of 256 bits to denote on which ingress /
egress ports the register should operate on. Spectrum-4 has more than
256 ports, so the register was extended by cited commit with a new
'port_page' field.
However, when filling the register's payload, the driver specifies the
ports as absolute numbers and not relative to the first port of the port
page, resulting in memory corruptions [1].
Fix by specifying the ports relative to the first port of the port page.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
Read of size 1 at addr ffff8881068cb00f by task devlink/1566
[...]
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
mlxsw_devlink_sb_occ_snapshot+0x75/0xb0
devlink_nl_sb_occ_snapshot_doit+0x1f9/0x2a0
genl_family_rcv_msg_doit+0x20c/0x300
genl_rcv_msg+0x567/0x800
netlink_rcv_skb+0x170/0x450
genl_rcv+0x2d/0x40
netlink_unicast+0x547/0x830
netlink_sendmsg+0x8d4/0xdb0
__sys_sendto+0x49b/0x510
__x64_sys_sendto+0xe5/0x1c0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[...]
Allocated by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
copy_verifier_state+0xbc2/0xfb0
do_check_common+0x2c51/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x109/0x170
__kasan_slab_free+0x14/0x30
kfree+0xca/0x2b0
free_verifier_state+0xce/0x270
do_check_common+0x4828/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
ASoC: amd: acp: add a null check for chip_pdev structure
When acp platform device creation is skipped, chip->chip_pdev value will
remain NULL. Add NULL check for chip->chip_pdev structure in
snd_acp_resume() function to avoid null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix remap of arena.
The bpf arena logic didn't account for mremap operation. Add a refcnt for
multiple mmap events to prevent use-after-free in arena_vm_close.
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_hd_modes
In nv17_tv_get_hd_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). The same applies to drm_cvt_mode().
Add a check to avoid null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: avoid using null object of framebuffer
Instead of using state->fb->obj[0] directly, get object from framebuffer
by calling drm_gem_fb_get_obj() and return error code when object is
null to avoid using null object of framebuffer.
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_ld_modes
In nv17_tv_get_ld_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd.
In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned.
In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix memory leak in nfs4_set_security_label
We leak nfs_fattr and nfs4_label every time we set a security xattr.