In the Linux kernel, the following vulnerability has been resolved:
net: 9p: fix refcount leak in p9_read_work() error handling
p9_req_put need to be called when m->rreq->rc.sdata is NULL to avoid
temporary refcount leak.
[Dominique: commit wording adjustments, p9_req_put argument fixes for rebase]
In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix deadlock and link starvation in outgoing data path
The current implementation queues up new control and user packets as needed
and processes this queue down to the ldisc in the same code path.
That means that the upper and the lower layer are hard coupled in the code.
Due to this deadlocks can happen as seen below while transmitting data,
especially during ldisc congestion. Furthermore, the data channels starve
the control channel on high transmission load on the ldisc.
Introduce an additional control channel data queue to prevent timeouts and
link hangups during ldisc congestion. This is being processed before the
user channel data queue in gsm_data_kick(), i.e. with the highest priority.
Put the queue to ldisc data path into a workqueue and trigger it whenever
new data has been put into the transmission queue. Change
gsm_dlci_data_sweep() accordingly to fill up the transmission queue until
TX_THRESH_HI. This solves the locking issue, keeps latency low and provides
good performance on high data load.
Note that now all packets from a DLCI are removed from the internal queue
if the associated DLCI was closed. This ensures that no data is sent by the
introduced write task to an already closed DLCI.
BUG: spinlock recursion on CPU#0, test_v24_loop/124
lock: serial8250_ports+0x3a8/0x7500, .magic: dead4ead, .owner: test_v24_loop/124, .owner_cpu: 0
CPU: 0 PID: 124 Comm: test_v24_loop Tainted: G O 5.18.0-rc2 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x34/0x44
do_raw_spin_lock+0x76/0xa0
_raw_spin_lock_irqsave+0x72/0x80
uart_write_room+0x3b/0xc0
gsm_data_kick+0x14b/0x240 [n_gsm]
gsmld_write_wakeup+0x35/0x70 [n_gsm]
tty_wakeup+0x53/0x60
tty_port_default_wakeup+0x1b/0x30
serial8250_tx_chars+0x12f/0x220
serial8250_handle_irq.part.0+0xfe/0x150
serial8250_default_handle_irq+0x48/0x80
serial8250_interrupt+0x56/0xa0
__handle_irq_event_percpu+0x78/0x1f0
handle_irq_event+0x34/0x70
handle_fasteoi_irq+0x90/0x1e0
__common_interrupt+0x69/0x100
common_interrupt+0x48/0xc0
asm_common_interrupt+0x1e/0x40
RIP: 0010:__do_softirq+0x83/0x34e
Code: 2a 0a ff 0f b7 ed c7 44 24 10 0a 00 00 00 48 c7 c7 51 2a 64 82 e8 2d
e2 d5 ff 65 66 c7 05 83 af 1e 7e 00 00 fb b8 ff ff ff ff <49> c7 c2 40 61
80 82 0f bc c5 41 89 c4 41 83 c4 01 0f 84 e6 00 00
RSP: 0018:ffffc90000003f98 EFLAGS: 00000286
RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff82642a51 RDI: ffffffff825bb5e7
RBP: 0000000000000200 R08: 00000008de3271a8 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000030 R14: 0000000000000000 R15: 0000000000000000
? __do_softirq+0x73/0x34e
irq_exit_rcu+0xb5/0x100
common_interrupt+0xa4/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x1e/0x40
RIP: 0010:_raw_spin_unlock_irqrestore+0x2e/0x50
Code: 00 55 48 89 fd 48 83 c7 18 53 48 89 f3 48 8b 74 24 10 e8 85 28 36 ff
48 89 ef e8 cd 58 36 ff 80 e7 02 74 01 fb bf 01 00 00 00 <e8> 3d 97 33 ff
65 8b 05 96 23 2b 7e 85 c0 74 03 5b 5d c3 0f 1f 44
RSP: 0018:ffffc9000020fd08 EFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000246 RCX: 0000000000000000
RDX: 0000000000000004 RSI: ffffffff8257fd74 RDI: 0000000000000001
RBP: ffff8880057de3a0 R08: 00000008de233000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000100 R14: 0000000000000202 R15: ffff8880057df0b8
? _raw_spin_unlock_irqrestore+0x23/0x50
gsmtty_write+0x65/0x80 [n_gsm]
n_tty_write+0x33f/0x530
? swake_up_all+0xe0/0xe0
file_tty_write.constprop.0+0x1b1/0x320
? n_tty_flush_buffer+0xb0/0xb0
new_sync_write+0x10c/0x190
vfs_write+0x282/0x310
ksys_write+0x68/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f3e5e35c15c
Code: 8b 7c 24 08 89 c5 e8 c5 ff ff ff 89 ef 89 44 24
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_rproc: Fix refcount leak in imx_rproc_addr_init
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not needed anymore.
This function has two paths missing of_node_put().
In the Linux kernel, the following vulnerability has been resolved:
mfd: max77620: Fix refcount leak in max77620_initialise_fps
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix crash due to stale SRB access around I/O timeouts
Ensure SRB is returned during I/O timeout error escalation. If that is not
possible fail the escalation path.
Following crash stack was seen:
BUG: unable to handle kernel paging request at 0000002f56aa90f8
IP: qla_chk_edif_rx_sa_delete_pending+0x14/0x30 [qla2xxx]
Call Trace:
? qla2x00_status_entry+0x19f/0x1c50 [qla2xxx]
? qla2x00_start_sp+0x116/0x1170 [qla2xxx]
? dma_pool_alloc+0x1d6/0x210
? mempool_alloc+0x54/0x130
? qla24xx_process_response_queue+0x548/0x12b0 [qla2xxx]
? qla_do_work+0x2d/0x40 [qla2xxx]
? process_one_work+0x14c/0x390
In the Linux kernel, the following vulnerability has been resolved:
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
In the Linux kernel, the following vulnerability has been resolved:
dm thin: fix use-after-free crash in dm_sm_register_threshold_callback
Fault inject on pool metadata device reports:
BUG: KASAN: use-after-free in dm_pool_register_metadata_threshold+0x40/0x80
Read of size 8 at addr ffff8881b9d50068 by task dmsetup/950
CPU: 7 PID: 950 Comm: dmsetup Tainted: G W 5.19.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_address_description.constprop.0.cold+0xeb/0x3f4
kasan_report.cold+0xe6/0x147
dm_pool_register_metadata_threshold+0x40/0x80
pool_ctr+0xa0a/0x1150
dm_table_add_target+0x2c8/0x640
table_load+0x1fd/0x430
ctl_ioctl+0x2c4/0x5a0
dm_ctl_ioctl+0xa/0x10
__x64_sys_ioctl+0xb3/0xd0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This can be easily reproduced using:
echo offline > /sys/block/sda/device/state
dd if=/dev/zero of=/dev/mapper/thin bs=4k count=10
dmsetup load pool --table "0 20971520 thin-pool /dev/sda /dev/sdb 128 0 0"
If a metadata commit fails, the transaction will be aborted and the
metadata space maps will be destroyed. If a DM table reload then
happens for this failed thin-pool, a use-after-free will occur in
dm_sm_register_threshold_callback (called from
dm_pool_register_metadata_threshold).
Fix this by in dm_pool_register_metadata_threshold() by returning the
-EINVAL error if the thin-pool is in fail mode. Also fail pool_ctr()
with a new error message: "Error registering metadata threshold".
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: avoid invalid memory access via node_online(NUMA_NO_NODE)
KASAN reports:
[ 4.668325][ T0] BUG: KASAN: wild-memory-access in dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497)
[ 4.676149][ T0] Read of size 8 at addr 1fffffff85115558 by task swapper/0/0
[ 4.683454][ T0]
[ 4.685638][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.19.0-rc3-00004-g0e862838f290 #1
[ 4.694331][ T0] Hardware name: Supermicro SYS-5018D-FN4T/X10SDV-8C-TLN4F, BIOS 1.1 03/02/2016
[ 4.703196][ T0] Call Trace:
[ 4.706334][ T0] <TASK>
[ 4.709133][ T0] ? dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497)
after converting the type of the first argument (@nr, bit number)
of arch_test_bit() from `long` to `unsigned long`[0].
Under certain conditions (for example, when ACPI NUMA is disabled
via command line), pxm_to_node() can return %NUMA_NO_NODE (-1).
It is valid 'magic' number of NUMA node, but not valid bit number
to use in bitops.
node_online() eventually descends to test_bit() without checking
for the input, assuming it's on caller side (which might be good
for perf-critical tasks). There, -1 becomes %ULONG_MAX which leads
to an insane array index when calculating bit position in memory.
For now, add an explicit check for @node being not %NUMA_NO_NODE
before calling test_bit(). The actual logics didn't change here
at all.
[0] https://github.com/norov/linux/commit/0e862838f290147ea9c16db852d8d494b552d38d
In the Linux kernel, the following vulnerability has been resolved:
block: don't allow the same type rq_qos add more than once
In our test of iocost, we encountered some list add/del corruptions of
inner_walk list in ioc_timer_fn.
The reason can be described as follows:
cpu 0 cpu 1
ioc_qos_write ioc_qos_write
ioc = q_to_ioc(queue);
if (!ioc) {
ioc = kzalloc();
ioc = q_to_ioc(queue);
if (!ioc) {
ioc = kzalloc();
...
rq_qos_add(q, rqos);
}
...
rq_qos_add(q, rqos);
...
}
When the io.cost.qos file is written by two cpus concurrently, rq_qos may
be added to one disk twice. In that case, there will be two iocs enabled
and running on one disk. They own different iocgs on their active list. In
the ioc_timer_fn function, because of the iocgs from two iocs have the
same root iocg, the root iocg's walk_list may be overwritten by each other
and this leads to list add/del corruptions in building or destroying the
inner_walk list.
And so far, the blk-rq-qos framework works in case that one instance for
one type rq_qos per queue by default. This patch make this explicit and
also fix the crash above.