In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_qlen_notify() idempotent
htb_qlen_notify() always deactivates the HTB class and in fact could
trigger a warning if it is already deactivated. Therefore, it is not
idempotent and not friendly to its callers, like fq_codel_dequeue().
Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers'
life.
In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix oob write in trace_seq_to_buffer()
syzbot reported this bug:
==================================================================
BUG: KASAN: slab-out-of-bounds in trace_seq_to_buffer kernel/trace/trace.c:1830 [inline]
BUG: KASAN: slab-out-of-bounds in tracing_splice_read_pipe+0x6be/0xdd0 kernel/trace/trace.c:6822
Write of size 4507 at addr ffff888032b6b000 by task syz.2.320/7260
CPU: 1 UID: 0 PID: 7260 Comm: syz.2.320 Not tainted 6.15.0-rc1-syzkaller-00301-g3bde70a2c827 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x3c/0x60 mm/kasan/shadow.c:106
trace_seq_to_buffer kernel/trace/trace.c:1830 [inline]
tracing_splice_read_pipe+0x6be/0xdd0 kernel/trace/trace.c:6822
....
==================================================================
It has been reported that trace_seq_to_buffer() tries to copy more data
than PAGE_SIZE to buf. Therefore, to prevent this, we should use the
smaller of trace_seq_used(&iter->seq) and PAGE_SIZE as an argument.
In the Linux kernel, the following vulnerability has been resolved:
net: lan743x: Fix memleak issue when GSO enabled
Always map the `skb` to the LS descriptor. Previously skb was
mapped to EXT descriptor when the number of fragments is zero with
GSO enabled. Mapping the skb to EXT descriptor prevents it from
being freed, leading to a memory leak
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix out-of-bound memcpy() during ethtool -w
When retrieving the FW coredump using ethtool, it can sometimes cause
memory corruption:
BUG: KFENCE: memory corruption in __bnxt_get_coredump+0x3ef/0x670 [bnxt_en]
Corrupted memory at 0x000000008f0f30e8 [ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ] (in kfence-#45):
__bnxt_get_coredump+0x3ef/0x670 [bnxt_en]
ethtool_get_dump_data+0xdc/0x1a0
__dev_ethtool+0xa1e/0x1af0
dev_ethtool+0xa8/0x170
dev_ioctl+0x1b5/0x580
sock_do_ioctl+0xab/0xf0
sock_ioctl+0x1ce/0x2e0
__x64_sys_ioctl+0x87/0xc0
do_syscall_64+0x5c/0xf0
entry_SYSCALL_64_after_hwframe+0x78/0x80
...
This happens when copying the coredump segment list in
bnxt_hwrm_dbg_dma_data() with the HWRM_DBG_COREDUMP_LIST FW command.
The info->dest_buf buffer is allocated based on the number of coredump
segments returned by the FW. The segment list is then DMA'ed by
the FW and the length of the DMA is returned by FW. The driver then
copies this DMA'ed segment list to info->dest_buf.
In some cases, this DMA length may exceed the info->dest_buf length
and cause the above BUG condition. Fix it by capping the copy
length to not exceed the length of info->dest_buf. The extra
DMA data contains no useful information.
This code path is shared for the HWRM_DBG_COREDUMP_LIST and the
HWRM_DBG_COREDUMP_RETRIEVE FW commands. The buffering is different
for these 2 FW commands. To simplify the logic, we need to move
the line to adjust the buffer length for HWRM_DBG_COREDUMP_RETRIEVE
up, so that the new check to cap the copy length will work for both
commands.
In the Linux kernel, the following vulnerability has been resolved:
mtd: inftlcore: Add error check for inftl_read_oob()
In INFTL_findwriteunit(), the return value of inftl_read_oob()
need to be checked. A proper implementation can be
found in INFTL_deleteblock(). The status will be set as
SECTOR_IGNORE to break from the while-loop correctly
if the inftl_read_oob() fails.
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix WARN_ON(!ctx) in __free_event() for partial init
Move the get_ctx(child_ctx) call and the child_event->ctx assignment to
occur immediately after the child event is allocated. Ensure that
child_event->ctx is non-NULL before any subsequent error path within
inherit_event calls free_event(), satisfying the assumptions of the
cleanup code.
Details:
There's no clear Fixes tag, because this bug is a side-effect of
multiple interacting commits over time (up to 15 years old), not
a single regression.
The code initially incremented refcount then assigned context
immediately after the child_event was created. Later, an early
validity check for child_event was added before the
refcount/assignment. Even later, a WARN_ON_ONCE() cleanup check was
added, assuming event->ctx is valid if the pmu_ctx is valid.
The problem is that the WARN_ON_ONCE() could trigger after the initial
check passed but before child_event->ctx was assigned, violating its
precondition. The solution is to assign child_event->ctx right after
its initial validation. This ensures the context exists for any
subsequent checks or cleanup routines, resolving the WARN_ON_ONCE().
To resolve it, defer the refcount update and child_event->ctx assignment
directly after child_event->pmu_ctx is set but before checking if the
parent event is orphaned. The cleanup routine depends on
event->pmu_ctx being non-NULL before it verifies event->ctx is
non-NULL. This also maintains the author's original intent of passing
in child_ctx to find_get_pmu_context before its refcount/assignment.
[ mingo: Expanded the changelog from another email by Gabriel Shahrouzi. ]
In the Linux kernel, the following vulnerability has been resolved:
9p/net: fix improper handling of bogus negative read/write replies
In p9_client_write() and p9_client_read_once(), if the server
incorrectly replies with success but a negative write/read count then we
would consider written (negative) <= rsize (positive) because both
variables were signed.
Make variables unsigned to avoid this problem.
The reproducer linked below now fails with the following error instead
of a null pointer deref:
9pnet: bogus RWRITE count (4294967295 > 3)
In the Linux kernel, the following vulnerability has been resolved:
um: work around sched_yield not yielding in time-travel mode
sched_yield by a userspace may not actually cause scheduling in
time-travel mode as no time has passed. In the case seen it appears to
be a badly implemented userspace spinlock in ASAN. Unfortunately, with
time-travel it causes an extreme slowdown or even deadlock depending on
the kernel configuration (CONFIG_UML_MAX_USERSPACE_ITERATIONS).
Work around it by accounting time to the process whenever it executes a
sched_yield syscall.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: aspeed: Add NULL pointer check in ast_vhub_init_dev()
The variable d->name, returned by devm_kasprintf(), could be NULL.
A pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool
In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Fix isochronous Ring Underrun/Overrun event handling
The TRB pointer of these events points at enqueue at the time of error
occurrence on xHCI 1.1+ HCs or it's NULL on older ones. By the time we
are handling the event, a new TD may be queued at this ring position.
I can trigger this race by rising interrupt moderation to increase IRQ
handling delay. Similar delay may occur naturally due to system load.
If this ever happens after a Missed Service Error, missed TDs will be
skipped and the new TD processed as if it matched the event. It could
be given back prematurely, risking data loss or buffer UAF by the xHC.
Don't complete TDs on xrun events and don't warn if queued TDs don't
match the event's TRB pointer, which can be NULL or a link/no-op TRB.
Don't warn if there are no queued TDs at all.
Now that it's safe, also handle xrun events if the skip flag is clear.
This ensures completion of any TD stuck in 'error mid TD' state right
before the xrun event, which could happen if a driver submits a finite
number of URBs to a buggy HC and then an error occurs on the last TD.