In the Linux kernel, the following vulnerability has been resolved:
team: prevent adding a device which is already a team device lower
Prevent adding a device which is already a team device lower,
e.g. adding veth0 if vlan1 was already added and veth0 is a lower of
vlan1.
This is not useful in practice and can lead to recursive locking:
$ ip link add veth0 type veth peer name veth1
$ ip link set veth0 up
$ ip link set veth1 up
$ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1
$ ip link add team0 type team
$ ip link set veth0.1 down
$ ip link set veth0.1 master team0
team0: Port device veth0.1 added
$ ip link set veth0 down
$ ip link set veth0 master team0
============================================
WARNING: possible recursive locking detected
6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted
--------------------------------------------
ip/7684 is trying to acquire lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
but task is already holding lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(team->team_lock_key);
lock(team->team_lock_key);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by ip/7684:
stack backtrace:
CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_deadlock_bug.cold (kernel/locking/lockdep.c:3040)
__lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226)
? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548)
lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2))
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? lock_acquire (kernel/locking/lockdep.c:5822)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
__mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? fib_sync_up (net/ipv4/fib_semantics.c:2167)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
__dev_notify_flags (net/core/dev.c:8993)
? __dev_change_flags (net/core/dev.c:8975)
dev_change_flags (net/core/dev.c:9027)
vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470)
? br_device_event (net/bridge/br.c:143)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
dev_open (net/core/dev.c:1519 net/core/dev.c:1505)
team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977)
? __pfx_team_add_slave (drivers/net/team/team_core.c:1972)
do_set_master (net/core/rtnetlink.c:2917)
do_setlink.isra.0 (net/core/rtnetlink.c:3117)
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: remove unused check_buddy_priv
Commit 2461c7d60f9f ("rtlwifi: Update header file") introduced a global
list of private data structures.
Later on, commit 26634c4b1868 ("rtlwifi Modify existing bits to match
vendor version 2013.02.07") started adding the private data to that list at
probe time and added a hook, check_buddy_priv to find the private data from
a similar device.
However, that function was never used.
Besides, though there is a lock for that list, it is never used. And when
the probe fails, the private data is never removed from the list. This
would cause a second probe to access freed memory.
Remove the unused hook, structures and members, which will prevent the
potential race condition on the list and its corruption during a second
probe when probe fails.
In the Linux kernel, the following vulnerability has been resolved:
ubifs: skip dumping tnc tree when zroot is null
Clearing slab cache will free all znode in memory and make
c->zroot.znode = NULL, then dumping tnc tree will access
c->zroot.znode which cause null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: fix memory leaks and invalid access at probe error path
Deinitialize at reverse order when probe fails.
When init_sw_vars fails, rtl_deinit_core should not be called, specially
now that it destroys the rtl_wq workqueue.
And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be
leaked.
Remove pci_set_drvdata call as it will already be cleaned up by the core
driver code and could lead to memory leaks too. cf. commit 8d450935ae7f
("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and
commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory").
In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: oss: Fix race at SNDCTL_DSP_SYNC
There is a small race window at snd_pcm_oss_sync() that is called from
OSS PCM SNDCTL_DSP_SYNC ioctl; namely the function calls
snd_pcm_oss_make_ready() at first, then takes the params_lock mutex
for the rest. When the stream is set up again by another thread
between them, it leads to inconsistency, and may result in unexpected
results such as NULL dereference of OSS buffer as a fuzzer spotted
recently.
The fix is simply to cover snd_pcm_oss_make_ready() call into the same
params_lock mutex with snd_pcm_oss_make_ready_locked() variant.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: omap: use threaded IRQ for LCD DMA
When using touchscreen and framebuffer, Nokia 770 crashes easily with:
BUG: scheduling while atomic: irq/144-ads7846/82/0x00010000
Modules linked in: usb_f_ecm g_ether usb_f_rndis u_ether libcomposite configfs omap_udc ohci_omap ohci_hcd
CPU: 0 UID: 0 PID: 82 Comm: irq/144-ads7846 Not tainted 6.12.7-770 #2
Hardware name: Nokia 770
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x54/0x5c
dump_stack_lvl from __schedule_bug+0x50/0x70
__schedule_bug from __schedule+0x4d4/0x5bc
__schedule from schedule+0x34/0xa0
schedule from schedule_preempt_disabled+0xc/0x10
schedule_preempt_disabled from __mutex_lock.constprop.0+0x218/0x3b4
__mutex_lock.constprop.0 from clk_prepare_lock+0x38/0xe4
clk_prepare_lock from clk_set_rate+0x18/0x154
clk_set_rate from sossi_read_data+0x4c/0x168
sossi_read_data from hwa742_read_reg+0x5c/0x8c
hwa742_read_reg from send_frame_handler+0xfc/0x300
send_frame_handler from process_pending_requests+0x74/0xd0
process_pending_requests from lcd_dma_irq_handler+0x50/0x74
lcd_dma_irq_handler from __handle_irq_event_percpu+0x44/0x130
__handle_irq_event_percpu from handle_irq_event+0x28/0x68
handle_irq_event from handle_level_irq+0x9c/0x170
handle_level_irq from generic_handle_domain_irq+0x2c/0x3c
generic_handle_domain_irq from omap1_handle_irq+0x40/0x8c
omap1_handle_irq from generic_handle_arch_irq+0x28/0x3c
generic_handle_arch_irq from call_with_stack+0x1c/0x24
call_with_stack from __irq_svc+0x94/0xa8
Exception stack(0xc5255da0 to 0xc5255de8)
5da0: 00000001 c22fc620 00000000 00000000 c08384a8 c106fc00 00000000 c240c248
5dc0: c113a600 c3f6ec30 00000001 00000000 c22fc620 c5255df0 c22fc620 c0279a94
5de0: 60000013 ffffffff
__irq_svc from clk_prepare_lock+0x4c/0xe4
clk_prepare_lock from clk_get_rate+0x10/0x74
clk_get_rate from uwire_setup_transfer+0x40/0x180
uwire_setup_transfer from spi_bitbang_transfer_one+0x2c/0x9c
spi_bitbang_transfer_one from spi_transfer_one_message+0x2d0/0x664
spi_transfer_one_message from __spi_pump_transfer_message+0x29c/0x498
__spi_pump_transfer_message from __spi_sync+0x1f8/0x2e8
__spi_sync from spi_sync+0x24/0x40
spi_sync from ads7846_halfd_read_state+0x5c/0x1c0
ads7846_halfd_read_state from ads7846_irq+0x58/0x348
ads7846_irq from irq_thread_fn+0x1c/0x78
irq_thread_fn from irq_thread+0x120/0x228
irq_thread from kthread+0xc8/0xe8
kthread from ret_from_fork+0x14/0x28
As a quick fix, switch to a threaded IRQ which provides a stable system.
In the Linux kernel, the following vulnerability has been resolved:
net: let net.core.dev_weight always be non-zero
The following problem was encountered during stability test:
(NULL net_device): NAPI poll function process_backlog+0x0/0x530 \
returned 1, exceeding its budget of 0.
------------[ cut here ]------------
list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \
next=ffff88905f746e40.
WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \
__list_add_valid_or_report+0xf3/0x130
CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+
RIP: 0010:__list_add_valid_or_report+0xf3/0x130
Call Trace:
? __warn+0xcd/0x250
? __list_add_valid_or_report+0xf3/0x130
enqueue_to_backlog+0x923/0x1070
netif_rx_internal+0x92/0x2b0
__netif_rx+0x15/0x170
loopback_xmit+0x2ef/0x450
dev_hard_start_xmit+0x103/0x490
__dev_queue_xmit+0xeac/0x1950
ip_finish_output2+0x6cc/0x1620
ip_output+0x161/0x270
ip_push_pending_frames+0x155/0x1a0
raw_sendmsg+0xe13/0x1550
__sys_sendto+0x3bf/0x4e0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x5b/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reproduction command is as follows:
sysctl -w net.core.dev_weight=0
ping 127.0.0.1
This is because when the napi's weight is set to 0, process_backlog() may
return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this
napi to be re-polled in net_rx_action() until __do_softirq() times out.
Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can
be retriggered in enqueue_to_backlog(), causing this issue.
Making the napi's weight always non-zero solves this problem.
Triggering this issue requires system-wide admin (setting is
not namespaced).
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: protect access to buffers with no active references
nilfs_lookup_dirty_data_buffers(), which iterates through the buffers
attached to dirty data folios/pages, accesses the attached buffers without
locking the folios/pages.
For data cache, nilfs_clear_folio_dirty() may be called asynchronously
when the file system degenerates to read only, so
nilfs_lookup_dirty_data_buffers() still has the potential to cause use
after free issues when buffers lose the protection of their dirty state
midway due to this asynchronous clearing and are unintentionally freed by
try_to_free_buffers().
Eliminate this race issue by adjusting the lock section in this function.
In the Linux kernel, the following vulnerability has been resolved:
ptp: Ensure info->enable callback is always set
The ioctl and sysfs handlers unconditionally call the ->enable callback.
Not all drivers implement that callback, leading to NULL dereferences.
Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c.
Instead use a dummy callback if no better was specified by the driver.