Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 5.15.108  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: dm integrity: call kmem_cache_destroy() in dm_integrity_init() error path Otherwise the journal_io_cache will leak if dm_register_target() fails.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: nfsd: clean up potential nfsd_file refcount leaks in COPY codepath There are two different flavors of the nfsd4_copy struct. One is embedded in the compound and is used directly in synchronous copies. The other is dynamically allocated, refcounted and tracked in the client struture. For the embedded one, the cleanup just involves releasing any nfsd_files held on its behalf. For the async one, the cleanup is a bit more involved, and we need to dequeue it from lists, unhash it, etc. There is at least one potential refcount leak in this code now. If the kthread_create call fails, then both the src and dst nfsd_files in the original nfsd4_copy object are leaked. The cleanup in this codepath is also sort of weird. In the async copy case, we'll have up to four nfsd_file references (src and dst for both flavors of copy structure). They are both put at the end of nfsd4_do_async_copy, even though the ones held on behalf of the embedded one outlive that structure. Change it so that we always clean up the nfsd_file refs held by the embedded copy structure before nfsd4_copy returns. Rework cleanup_async_copy to handle both inter and intra copies. Eliminate nfsd4_cleanup_intra_ssc since it now becomes a no-op.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: ipmi_si: fix a memleak in try_smi_init() Kmemleak reported the following leak info in try_smi_init(): unreferenced object 0xffff00018ecf9400 (size 1024): comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s) backtrace: [<000000004ca5b312>] __kmalloc+0x4b8/0x7b0 [<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si] [<000000006460d325>] 0xffff800081b10148 [<0000000039206ea5>] do_one_initcall+0x64/0x2a4 [<00000000601399ce>] do_init_module+0x50/0x300 [<000000003c12ba3c>] load_module+0x7a8/0x9e0 [<00000000c246fffe>] __se_sys_init_module+0x104/0x180 [<00000000eea99093>] __arm64_sys_init_module+0x24/0x30 [<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250 [<0000000070f4f8b7>] do_el0_svc+0x48/0xe0 [<000000005a05337f>] el0_svc+0x24/0x3c [<000000005eb248d6>] el0_sync_handler+0x160/0x164 [<0000000030a59039>] el0_sync+0x160/0x180 The problem was that when an error occurred before handlers registration and after allocating `new_smi->si_sm`, the variable wouldn't be freed in the error handling afterwards since `shutdown_smi()` hadn't been registered yet. Fix it by adding a `kfree()` in the error handling path in `try_smi_init()`.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: cifs: fix mid leak during reconnection after timeout threshold When the number of responses with status of STATUS_IO_TIMEOUT exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect the connection. But we do not return the mid, or the credits returned for the mid, or reduce the number of in-flight requests. This bug could result in the server->in_flight count to go bad, and also cause a leak in the mids. This change moves the check to a few lines below where the response is decrypted, even of the response is read from the transform header. This way, the code for returning the mids can be reused. Also, the cifs_reconnect was reconnecting just the transport connection before. In case of multi-channel, this may not be what we want to do after several timeouts. Changed that to reconnect the session and the tree too. Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name MAX_STATUS_IO_TIMEOUT.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Range check CHDBOFF and ERDBOFF If the value read from the CHDBOFF and ERDBOFF registers is outside the range of the MHI register space then an invalid address might be computed which later causes a kernel panic. Range check the read value to prevent a crash due to bad data from the device.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: tunnels: fix kasan splat when generating ipv4 pmtu error If we try to emit an icmp error in response to a nonliner skb, we get BUG: KASAN: slab-out-of-bounds in ip_compute_csum+0x134/0x220 Read of size 4 at addr ffff88811c50db00 by task iperf3/1691 CPU: 2 PID: 1691 Comm: iperf3 Not tainted 6.5.0-rc3+ #309 [..] kasan_report+0x105/0x140 ip_compute_csum+0x134/0x220 iptunnel_pmtud_build_icmp+0x554/0x1020 skb_tunnel_check_pmtu+0x513/0xb80 vxlan_xmit_one+0x139e/0x2ef0 vxlan_xmit+0x1867/0x2760 dev_hard_start_xmit+0x1ee/0x4f0 br_dev_queue_push_xmit+0x4d1/0x660 [..] ip_compute_csum() cannot deal with nonlinear skbs, so avoid it. After this change, splat is gone and iperf3 is no longer stuck.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: bonding: do not assume skb mac_header is set Drivers must not assume in their ndo_start_xmit() that skbs have their mac_header set. skb->data is all what is needed. bonding seems to be one of the last offender as caught by syzbot: WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 skb_mac_offset include/linux/skbuff.h:2913 [inline] WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline] WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline] WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline] WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 __bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline] WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470 Modules linked in: CPU: 1 PID: 12155 Comm: syz-executor.3 Not tainted 6.1.30-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/25/2023 RIP: 0010:skb_mac_header include/linux/skbuff.h:2907 [inline] RIP: 0010:skb_mac_offset include/linux/skbuff.h:2913 [inline] RIP: 0010:bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline] RIP: 0010:bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline] RIP: 0010:bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline] RIP: 0010:__bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline] RIP: 0010:bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470 Code: 8b 7c 24 30 e8 76 dd 1a 01 48 85 c0 74 0d 48 89 c3 e8 29 67 2e fe e9 15 ef ff ff e8 1f 67 2e fe e9 10 ef ff ff e8 15 67 2e fe <0f> 0b e9 45 f8 ff ff e8 09 67 2e fe e9 dc fa ff ff e8 ff 66 2e fe RSP: 0018:ffffc90002fff6e0 EFLAGS: 00010283 RAX: ffffffff835874db RBX: 000000000000ffff RCX: 0000000000040000 RDX: ffffc90004dcf000 RSI: 00000000000000b5 RDI: 00000000000000b6 RBP: ffffc90002fff8b8 R08: ffffffff83586d16 R09: ffffffff83586584 R10: 0000000000000007 R11: ffff8881599fc780 R12: ffff88811b6a7b7e R13: 1ffff110236d4f6f R14: ffff88811b6a7ac0 R15: 1ffff110236d4f76 FS: 00007f2e9eb47700(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2e421000 CR3: 000000010e6d4000 CR4: 00000000003526e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> [<ffffffff8471a49f>] netdev_start_xmit include/linux/netdevice.h:4925 [inline] [<ffffffff8471a49f>] __dev_direct_xmit+0x4ef/0x850 net/core/dev.c:4380 [<ffffffff851d845b>] dev_direct_xmit include/linux/netdevice.h:3043 [inline] [<ffffffff851d845b>] packet_direct_xmit+0x18b/0x300 net/packet/af_packet.c:284 [<ffffffff851c7472>] packet_snd net/packet/af_packet.c:3112 [inline] [<ffffffff851c7472>] packet_sendmsg+0x4a22/0x64d0 net/packet/af_packet.c:3143 [<ffffffff8467a4b2>] sock_sendmsg_nosec net/socket.c:716 [inline] [<ffffffff8467a4b2>] sock_sendmsg net/socket.c:736 [inline] [<ffffffff8467a4b2>] __sys_sendto+0x472/0x5f0 net/socket.c:2139 [<ffffffff8467a715>] __do_sys_sendto net/socket.c:2151 [inline] [<ffffffff8467a715>] __se_sys_sendto net/socket.c:2147 [inline] [<ffffffff8467a715>] __x64_sys_sendto+0xe5/0x100 net/socket.c:2147 [<ffffffff8553071f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff8553071f>] do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80 [<ffffffff85600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix memory leak in WMI firmware stats Memory allocated for firmware pdev, vdev and beacon statistics are not released during rmmod. Fix it by calling ath11k_fw_stats_free() function before hardware unregister. While at it, avoid calling ath11k_fw_stats_free() while processing the firmware stats received in the WMI event because the local list is getting spliced and reinitialised and hence there are no elements in the list after splicing. Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04


Contact Us

Shodan ® - All rights reserved