In the Linux kernel, the following vulnerability has been resolved:
drm: amd: display: Fix memory leakage
This commit fixes memory leakage in dc_construct_ctx() function.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: clean up potential nfsd_file refcount leaks in COPY codepath
There are two different flavors of the nfsd4_copy struct. One is
embedded in the compound and is used directly in synchronous copies. The
other is dynamically allocated, refcounted and tracked in the client
struture. For the embedded one, the cleanup just involves releasing any
nfsd_files held on its behalf. For the async one, the cleanup is a bit
more involved, and we need to dequeue it from lists, unhash it, etc.
There is at least one potential refcount leak in this code now. If the
kthread_create call fails, then both the src and dst nfsd_files in the
original nfsd4_copy object are leaked.
The cleanup in this codepath is also sort of weird. In the async copy
case, we'll have up to four nfsd_file references (src and dst for both
flavors of copy structure). They are both put at the end of
nfsd4_do_async_copy, even though the ones held on behalf of the embedded
one outlive that structure.
Change it so that we always clean up the nfsd_file refs held by the
embedded copy structure before nfsd4_copy returns. Rework
cleanup_async_copy to handle both inter and intra copies. Eliminate
nfsd4_cleanup_intra_ssc since it now becomes a no-op.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
The finalization of nilfs_segctor_thread() can race with
nilfs_segctor_kill_thread() which terminates that thread, potentially
causing a use-after-free BUG as KASAN detected.
At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member
of "struct nilfs_sc_info" to indicate the thread has finished, and then
notifies nilfs_segctor_kill_thread() of this using waitqueue
"sc_wait_task" on the struct nilfs_sc_info.
However, here, immediately after the NULL assignment to "sc_task", it is
possible that nilfs_segctor_kill_thread() will detect it and return to
continue the deallocation, freeing the nilfs_sc_info structure before the
thread does the notification.
This fixes the issue by protecting the NULL assignment to "sc_task" and
its notification, with spinlock "sc_state_lock" of the struct
nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to
see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate
the race.
In the Linux kernel, the following vulnerability has been resolved:
irqchip: Fix refcount leak in platform_irqchip_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
ipmi_si: fix a memleak in try_smi_init()
Kmemleak reported the following leak info in try_smi_init():
unreferenced object 0xffff00018ecf9400 (size 1024):
comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s)
backtrace:
[<000000004ca5b312>] __kmalloc+0x4b8/0x7b0
[<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si]
[<000000006460d325>] 0xffff800081b10148
[<0000000039206ea5>] do_one_initcall+0x64/0x2a4
[<00000000601399ce>] do_init_module+0x50/0x300
[<000000003c12ba3c>] load_module+0x7a8/0x9e0
[<00000000c246fffe>] __se_sys_init_module+0x104/0x180
[<00000000eea99093>] __arm64_sys_init_module+0x24/0x30
[<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250
[<0000000070f4f8b7>] do_el0_svc+0x48/0xe0
[<000000005a05337f>] el0_svc+0x24/0x3c
[<000000005eb248d6>] el0_sync_handler+0x160/0x164
[<0000000030a59039>] el0_sync+0x160/0x180
The problem was that when an error occurred before handlers registration
and after allocating `new_smi->si_sm`, the variable wouldn't be freed in
the error handling afterwards since `shutdown_smi()` hadn't been
registered yet. Fix it by adding a `kfree()` in the error handling path
in `try_smi_init()`.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) Simplify platform device handling
Coretemp's platform driver is unconventional. All the real work is done
globally by the initcall and CPU hotplug notifiers, while the "driver"
effectively just wraps an allocation and the registration of the hwmon
interface in a long-winded round-trip through the driver core. The whole
logic of dynamically creating and destroying platform devices to bring
the interfaces up and down is error prone, since it assumes
platform_device_add() will synchronously bind the driver and set drvdata
before it returns, thus results in a NULL dereference if drivers_autoprobe
is turned off for the platform bus. Furthermore, the unusual approach of
doing that from within a CPU hotplug notifier, already commented in the
code that it deadlocks suspend, also causes lockdep issues for other
drivers or subsystems which may want to legitimately register a CPU
hotplug notifier from a platform bus notifier.
All of these issues can be solved by ripping this unusual behaviour out
completely, simply tying the platform devices to the lifetime of the
module itself, and directly managing the hwmon interfaces from the
hotplug notifiers. There is a slight user-visible change in that
/sys/bus/platform/drivers/coretemp will no longer appear, and
/sys/devices/platform/coretemp.n will remain present if package n is
hotplugged off, but hwmon users should really only be looking for the
presence of the hwmon interfaces, whose behaviour remains unchanged.
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: Free devm resources when unregistering a device
In the current code, devres_release_all() only gets called if the device
has a bus and has been probed.
This leads to issues when using bus-less or driver-less devices where
the device might never get freed if a managed resource holds a reference
to the device. This is happening in the DRM framework for example.
We should thus call devres_release_all() in the device_del() function to
make sure that the device-managed actions are properly executed when the
device is unregistered, even if it has neither a bus nor a driver.
This is effectively the same change than commit 2f8d16a996da ("devres:
release resources on device_del()") that got reverted by commit
a525a3ddeaca ("driver core: free devres in device_release") over
memory leaks concerns.
This patch effectively combines the two commits mentioned above to
release the resources both on device_del() and device_release() and get
the best of both worlds.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix mid leak during reconnection after timeout threshold
When the number of responses with status of STATUS_IO_TIMEOUT
exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect
the connection. But we do not return the mid, or the credits
returned for the mid, or reduce the number of in-flight requests.
This bug could result in the server->in_flight count to go bad,
and also cause a leak in the mids.
This change moves the check to a few lines below where the
response is decrypted, even of the response is read from the
transform header. This way, the code for returning the mids
can be reused.
Also, the cifs_reconnect was reconnecting just the transport
connection before. In case of multi-channel, this may not be
what we want to do after several timeouts. Changed that to
reconnect the session and the tree too.
Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name
MAX_STATUS_IO_TIMEOUT.
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Range check CHDBOFF and ERDBOFF
If the value read from the CHDBOFF and ERDBOFF registers is outside the
range of the MHI register space then an invalid address might be computed
which later causes a kernel panic. Range check the read value to prevent
a crash due to bad data from the device.