In the Linux kernel, the following vulnerability has been resolved:
dm thin: Use last transaction's pmd->root when commit failed
Recently we found a softlock up problem in dm thin pool btree lookup
code due to corrupted metadata:
Kernel panic - not syncing: softlockup: hung tasks
CPU: 7 PID: 2669225 Comm: kworker/u16:3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: dm-thin do_worker [dm_thin_pool]
Call Trace:
<IRQ>
dump_stack+0x9c/0xd3
panic+0x35d/0x6b9
watchdog_timer_fn.cold+0x16/0x25
__run_hrtimer+0xa2/0x2d0
</IRQ>
RIP: 0010:__relink_lru+0x102/0x220 [dm_bufio]
__bufio_new+0x11f/0x4f0 [dm_bufio]
new_read+0xa3/0x1e0 [dm_bufio]
dm_bm_read_lock+0x33/0xd0 [dm_persistent_data]
ro_step+0x63/0x100 [dm_persistent_data]
btree_lookup_raw.constprop.0+0x44/0x220 [dm_persistent_data]
dm_btree_lookup+0x16f/0x210 [dm_persistent_data]
dm_thin_find_block+0x12c/0x210 [dm_thin_pool]
__process_bio_read_only+0xc5/0x400 [dm_thin_pool]
process_thin_deferred_bios+0x1a4/0x4a0 [dm_thin_pool]
process_one_work+0x3c5/0x730
Following process may generate a broken btree mixed with fresh and
stale btree nodes, which could get dm thin trapped in an infinite loop
while looking up data block:
Transaction 1: pmd->root = A, A->B->C // One path in btree
pmd->root = X, X->Y->Z // Copy-up
Transaction 2: X,Z is updated on disk, Y write failed.
// Commit failed, dm thin becomes read-only.
process_bio_read_only
dm_thin_find_block
__find_block
dm_btree_lookup(pmd->root)
The pmd->root points to a broken btree, Y may contain stale node
pointing to any block, for example X, which gets dm thin trapped into
a dead loop while looking up Z.
Fix this by setting pmd->root in __open_metadata(), so that dm thin
will use the last transaction's pmd->root if commit failed.
Fetch a reproducer in [Link].
Linke: https://bugzilla.kernel.org/show_bug.cgi?id=216790
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null-deref in dm_resume
[Why]
Fixing smatch error:
dm_resume() error: we previously assumed 'aconnector->dc_link' could be null
[How]
Check if dc_link null at the beginning of the loop,
so further checks can be dropped.
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix repeated calls to sock_put() when msg has more_data
In tcp_bpf_send_verdict() redirection, the eval variable is assigned to
__SK_REDIRECT after the apply_bytes data is sent, if msg has more_data,
sock_put() will be called multiple times.
We should reset the eval variable to __SK_NONE every time more_data
starts.
This causes:
IPv4: Attempt to release TCP socket in state 1 00000000b4c925d7
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 5 PID: 4482 at lib/refcount.c:25 refcount_warn_saturate+0x7d/0x110
Modules linked in:
CPU: 5 PID: 4482 Comm: sockhash_bypass Kdump: loaded Not tainted 6.0.0 #1
Hardware name: Red Hat KVM, BIOS 1.11.0-2.el7 04/01/2014
Call Trace:
<TASK>
__tcp_transmit_skb+0xa1b/0xb90
? __alloc_skb+0x8c/0x1a0
? __kmalloc_node_track_caller+0x184/0x320
tcp_write_xmit+0x22a/0x1110
__tcp_push_pending_frames+0x32/0xf0
do_tcp_sendpages+0x62d/0x640
tcp_bpf_push+0xae/0x2c0
tcp_bpf_sendmsg_redir+0x260/0x410
? preempt_count_add+0x70/0xa0
tcp_bpf_send_verdict+0x386/0x4b0
tcp_bpf_sendmsg+0x21b/0x3b0
sock_sendmsg+0x58/0x70
__sys_sendto+0xfa/0x170
? xfd_validate_state+0x1d/0x80
? switch_fpu_return+0x59/0xe0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
firmware: raspberrypi: fix possible memory leak in rpi_firmware_probe()
In rpi_firmware_probe(), if mbox_request_channel() fails, the 'fw' will
not be freed through rpi_firmware_delete(), fix this leak by calling
kfree() in the error path.
In the Linux kernel, the following vulnerability has been resolved:
mcb: mcb-parse: fix error handing in chameleon_parse_gdd()
If mcb_device_register() returns error in chameleon_parse_gdd(), the refcount
of bus and device name are leaked. Fix this by calling put_device() to give up
the reference, so they can be released in mcb_release_dev() and kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
clk: rockchip: Fix memory leak in rockchip_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it.
In the Linux kernel, the following vulnerability has been resolved:
iommu/fsl_pamu: Fix resource leak in fsl_pamu_probe()
The fsl_pamu_probe() returns directly when create_csd() failed, leaving
irq and memories unreleased.
Fix by jumping to error if create_csd() returns error.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix size validation for non-exclusive domains (v4)
Fix amdgpu_bo_validate_size() to check whether the TTM domain manager for the
requested memory exists, else we get a kernel oops when dereferencing "man".
v2: Make the patch standalone, i.e. not dependent on local patches.
v3: Preserve old behaviour and just check that the manager pointer is not
NULL.
v4: Complain if GTT domain requested and it is uninitialized--most likely a
bug.
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix invalid derefence of sb_lvbptr
I experience issues when putting a lkbsb on the stack and have sb_lvbptr
field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash
with the following kernel message, the dangled pointer is here
0xdeadbeef as example:
[ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef
[ 102.749320] #PF: supervisor read access in kernel mode
[ 102.749323] #PF: error_code(0x0000) - not-present page
[ 102.749325] PGD 0 P4D 0
[ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI
[ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565
[ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10
[ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe
[ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202
[ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040
[ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070
[ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001
[ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70
[ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001
[ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000
[ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0
[ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 102.749379] PKRU: 55555554
[ 102.749381] Call Trace:
[ 102.749382] <TASK>
[ 102.749383] ? send_args+0xb2/0xd0
[ 102.749389] send_common+0xb7/0xd0
[ 102.749395] _unlock_lock+0x2c/0x90
[ 102.749400] unlock_lock.isra.56+0x62/0xa0
[ 102.749405] dlm_unlock+0x21e/0x330
[ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 102.749419] ? preempt_count_sub+0xba/0x100
[ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture]
[ 102.786186] kthread+0x10a/0x130
[ 102.786581] ? kthread_complete_and_exit+0x20/0x20
[ 102.787156] ret_from_fork+0x22/0x30
[ 102.787588] </TASK>
[ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw
[ 102.792536] CR2: 00000000deadbeef
[ 102.792930] ---[ end trace 0000000000000000 ]---
This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags
is set when copying the lvbptr array instead of if it's just null which
fixes for me the issue.
I think this patch can fix other dlm users as well, depending how they
handle the init, freeing memory handling of sb_lvbptr and don't set
DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a
hidden issue all the time. However with checking on DLM_LKF_VALBLK the
user always need to provide a sb_lvbptr non-null value. There might be
more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and
non-null to report the user the way how DLM API is used is wrong but can
be added for later, this will only fix the current behaviour.