In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix race with concurrent opens in rename(2)
Besides sending the rename request to the server, the rename process
also involves closing any deferred close, waiting for outstanding I/O
to complete as well as marking all existing open handles as deleted to
prevent them from deferring closes, which increases the race window
for potential concurrent opens on the target file.
Fix this by unhashing the dentry in advance to prevent any concurrent
opens on the target.
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: use array_index_nospec with indices that come from guest
min and dest_id are guest-controlled indices. Using array_index_nospec()
after the bounds checks clamps these values to mitigate speculative execution
side-channels.
In the Linux kernel, the following vulnerability has been resolved:
fs/smb: Fix inconsistent refcnt update
A possible inconsistent update of refcount was identified in `smb2_compound_op`.
Such inconsistent update could lead to possible resource leaks.
Why it is a possible bug:
1. In the comment section of the function, it clearly states that the
reference to `cfile` should be dropped after calling this function.
2. Every control flow path would check and drop the reference to
`cfile`, except the patched one.
3. Existing callers would not handle refcount update of `cfile` if
-ENOMEM is returned.
To fix the bug, an extra goto label "out" is added, to make sure that the
cleanup logic would always be respected. As the problem is caused by the
allocation failure of `vars`, the cleanup logic between label "finished"
and "out" can be safely ignored. According to the definition of function
`is_replayable_error`, the error code of "-ENOMEM" is not recoverable.
Therefore, the replay logic also gets ignored.
In the Linux kernel, the following vulnerability has been resolved:
efivarfs: Fix slab-out-of-bounds in efivarfs_d_compare
Observed on kernel 6.6 (present on master as well):
BUG: KASAN: slab-out-of-bounds in memcmp+0x98/0xd0
Call trace:
kasan_check_range+0xe8/0x190
__asan_loadN+0x1c/0x28
memcmp+0x98/0xd0
efivarfs_d_compare+0x68/0xd8
__d_lookup_rcu_op_compare+0x178/0x218
__d_lookup_rcu+0x1f8/0x228
d_alloc_parallel+0x150/0x648
lookup_open.isra.0+0x5f0/0x8d0
open_last_lookups+0x264/0x828
path_openat+0x130/0x3f8
do_filp_open+0x114/0x248
do_sys_openat2+0x340/0x3c0
__arm64_sys_openat+0x120/0x1a0
If dentry->d_name.len < EFI_VARIABLE_GUID_LEN , 'guid' can become
negative, leadings to oob. The issue can be triggered by parallel
lookups using invalid filename:
T1 T2
lookup_open
->lookup
simple_lookup
d_add
// invalid dentry is added to hash list
lookup_open
d_alloc_parallel
__d_lookup_rcu
__d_lookup_rcu_op_compare
hlist_bl_for_each_entry_rcu
// invalid dentry can be retrieved
->d_compare
efivarfs_d_compare
// oob
Fix it by checking 'guid' before cmp.
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix potential warning in trace_printk_seq during ftrace_dump
When calling ftrace_dump_one() concurrently with reading trace_pipe,
a WARN_ON_ONCE() in trace_printk_seq() can be triggered due to a race
condition.
The issue occurs because:
CPU0 (ftrace_dump) CPU1 (reader)
echo z > /proc/sysrq-trigger
!trace_empty(&iter)
trace_iterator_reset(&iter) <- len = size = 0
cat /sys/kernel/tracing/trace_pipe
trace_find_next_entry_inc(&iter)
__find_next_entry
ring_buffer_empty_cpu <- all empty
return NULL
trace_printk_seq(&iter.seq)
WARN_ON_ONCE(s->seq.len >= s->seq.size)
In the context between trace_empty() and trace_find_next_entry_inc()
during ftrace_dump, the ring buffer data was consumed by other readers.
This caused trace_find_next_entry_inc to return NULL, failing to populate
`iter.seq`. At this point, due to the prior trace_iterator_reset, both
`iter.seq.len` and `iter.seq.size` were set to 0. Since they are equal,
the WARN_ON_ONCE condition is triggered.
Move the trace_printk_seq() into the if block that checks to make sure the
return value of trace_find_next_entry_inc() is non-NULL in
ftrace_dump_one(), ensuring the 'iter.seq' is properly populated before
subsequent operations.
In the Linux kernel, the following vulnerability has been resolved:
HID: hid-ntrig: fix unable to handle page fault in ntrig_report_version()
in ntrig_report_version(), hdev parameter passed from hid_probe().
sending descriptor to /dev/uhid can make hdev->dev.parent->parent to null
if hdev->dev.parent->parent is null, usb_dev has
invalid address(0xffffffffffffff58) that hid_to_usb_dev(hdev) returned
when usb_rcvctrlpipe() use usb_dev,it trigger
page fault error for address(0xffffffffffffff58)
add null check logic to ntrig_report_version()
before calling hid_to_usb_dev()
In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: fix slab out-of-bounds access in mt_report_fixup()
A malicious HID device can trigger a slab out-of-bounds during
mt_report_fixup() by passing in report descriptor smaller than
607 bytes. mt_report_fixup() attempts to patch byte offset 607
of the descriptor with 0x25 by first checking if byte offset
607 is 0x15 however it lacks bounds checks to verify if the
descriptor is big enough before conducting this check. Fix
this bug by ensuring the descriptor size is at least 608
bytes before accessing it.
Below is the KASAN splat after the out of bounds access happens:
[ 13.671954] ==================================================================
[ 13.672667] BUG: KASAN: slab-out-of-bounds in mt_report_fixup+0x103/0x110
[ 13.673297] Read of size 1 at addr ffff888103df39df by task kworker/0:1/10
[ 13.673297]
[ 13.673297] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0-00005-gec5d573d83f4-dirty #3
[ 13.673297] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/04
[ 13.673297] Call Trace:
[ 13.673297] <TASK>
[ 13.673297] dump_stack_lvl+0x5f/0x80
[ 13.673297] print_report+0xd1/0x660
[ 13.673297] kasan_report+0xe5/0x120
[ 13.673297] __asan_report_load1_noabort+0x18/0x20
[ 13.673297] mt_report_fixup+0x103/0x110
[ 13.673297] hid_open_report+0x1ef/0x810
[ 13.673297] mt_probe+0x422/0x960
[ 13.673297] hid_device_probe+0x2e2/0x6f0
[ 13.673297] really_probe+0x1c6/0x6b0
[ 13.673297] __driver_probe_device+0x24f/0x310
[ 13.673297] driver_probe_device+0x4e/0x220
[ 13.673297] __device_attach_driver+0x169/0x320
[ 13.673297] bus_for_each_drv+0x11d/0x1b0
[ 13.673297] __device_attach+0x1b8/0x3e0
[ 13.673297] device_initial_probe+0x12/0x20
[ 13.673297] bus_probe_device+0x13d/0x180
[ 13.673297] device_add+0xe3a/0x1670
[ 13.673297] hid_add_device+0x31d/0xa40
[...]
In the Linux kernel, the following vulnerability has been resolved:
VMCI: check context->notify_page after call to get_user_pages_fast() to avoid GPF
The call to get_user_pages_fast() in vmci_host_setup_notify() can return
NULL context->notify_page causing a GPF. To avoid GPF check if
context->notify_page == NULL and return error if so.
general protection fault, probably for non-canonical address
0xe0009d1000000060: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0x0005088000000300-
0x0005088000000307]
CPU: 2 PID: 26180 Comm: repro_34802241 Not tainted 6.1.0-rc4 #1
Hardware name: Red Hat KVM, BIOS 1.15.0-2.module+el8.6.0 04/01/2014
RIP: 0010:vmci_ctx_check_signal_notify+0x91/0xe0
Call Trace:
<TASK>
vmci_host_unlocked_ioctl+0x362/0x1f40
__x64_sys_ioctl+0x1a1/0x230
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: idle: Check acpi_fetch_acpi_dev() return value
The return value of acpi_fetch_acpi_dev() could be NULL, which would
cause a NULL pointer dereference to occur in acpi_device_hid().
[ rjw: Subject and changelog edits, added empty line after if () ]