In the Linux kernel, the following vulnerability has been resolved:
fs: export anon_inode_make_secure_inode() and fix secretmem LSM bypass
Export anon_inode_make_secure_inode() to allow KVM guest_memfd to create
anonymous inodes with proper security context. This replaces the current
pattern of calling alloc_anon_inode() followed by
inode_init_security_anon() for creating security context manually.
This change also fixes a security regression in secretmem where the
S_PRIVATE flag was not cleared after alloc_anon_inode(), causing
LSM/SELinux checks to be bypassed for secretmem file descriptors.
As guest_memfd currently resides in the KVM module, we need to export this
symbol for use outside the core kernel. In the future, guest_memfd might be
moved to core-mm, at which point the symbols no longer would have to be
exported. When/if that happens is still unclear.
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port()
The function core_scsi3_decode_spec_i_port(), in its error code path,
unconditionally calls core_scsi3_lunacl_undepend_item() passing the
dest_se_deve pointer, which may be NULL.
This can lead to a NULL pointer dereference if dest_se_deve remains
unset.
SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg
Unable to handle kernel paging request at virtual address dfff800000000012
Call trace:
core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P)
core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod]
core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod]
target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod]
Fix this by adding a NULL check before calling
core_scsi3_lunacl_undepend_item()
In the Linux kernel, the following vulnerability has been resolved:
mtk-sd: Prevent memory corruption from DMA map failure
If msdc_prepare_data() fails to map the DMA region, the request is
not prepared for data receiving, but msdc_start_data() proceeds
the DMA with previous setting.
Since this will lead a memory corruption, we have to stop the
request operation soon after the msdc_prepare_data() fails to
prepare it.
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Fix timeline left held on VMA alloc error
The following error has been reported sporadically by CI when a test
unbinds the i915 driver on a ring submission platform:
<4> [239.330153] ------------[ cut here ]------------
<4> [239.330166] i915 0000:00:02.0: [drm] drm_WARN_ON(dev_priv->mm.shrink_count)
<4> [239.330196] WARNING: CPU: 1 PID: 18570 at drivers/gpu/drm/i915/i915_gem.c:1309 i915_gem_cleanup_early+0x13e/0x150 [i915]
...
<4> [239.330640] RIP: 0010:i915_gem_cleanup_early+0x13e/0x150 [i915]
...
<4> [239.330942] Call Trace:
<4> [239.330944] <TASK>
<4> [239.330949] i915_driver_late_release+0x2b/0xa0 [i915]
<4> [239.331202] i915_driver_release+0x86/0xa0 [i915]
<4> [239.331482] devm_drm_dev_init_release+0x61/0x90
<4> [239.331494] devm_action_release+0x15/0x30
<4> [239.331504] release_nodes+0x3d/0x120
<4> [239.331517] devres_release_all+0x96/0xd0
<4> [239.331533] device_unbind_cleanup+0x12/0x80
<4> [239.331543] device_release_driver_internal+0x23a/0x280
<4> [239.331550] ? bus_find_device+0xa5/0xe0
<4> [239.331563] device_driver_detach+0x14/0x20
...
<4> [357.719679] ---[ end trace 0000000000000000 ]---
If the test also unloads the i915 module then that's followed with:
<3> [357.787478] =============================================================================
<3> [357.788006] BUG i915_vma (Tainted: G U W N ): Objects remaining on __kmem_cache_shutdown()
<3> [357.788031] -----------------------------------------------------------------------------
<3> [357.788204] Object 0xffff888109e7f480 @offset=29824
<3> [357.788670] Allocated in i915_vma_instance+0xee/0xc10 [i915] age=292729 cpu=4 pid=2244
<4> [357.788994] i915_vma_instance+0xee/0xc10 [i915]
<4> [357.789290] init_status_page+0x7b/0x420 [i915]
<4> [357.789532] intel_engines_init+0x1d8/0x980 [i915]
<4> [357.789772] intel_gt_init+0x175/0x450 [i915]
<4> [357.790014] i915_gem_init+0x113/0x340 [i915]
<4> [357.790281] i915_driver_probe+0x847/0xed0 [i915]
<4> [357.790504] i915_pci_probe+0xe6/0x220 [i915]
...
Closer analysis of CI results history has revealed a dependency of the
error on a few IGT tests, namely:
- igt@api_intel_allocator@fork-simple-stress-signal,
- igt@api_intel_allocator@two-level-inception-interruptible,
- igt@gem_linear_blits@interruptible,
- igt@prime_mmap_coherency@ioctl-errors,
which invisibly trigger the issue, then exhibited with first driver unbind
attempt.
All of the above tests perform actions which are actively interrupted with
signals. Further debugging has allowed to narrow that scope down to
DRM_IOCTL_I915_GEM_EXECBUFFER2, and ring_context_alloc(), specific to ring
submission, in particular.
If successful then that function, or its execlists or GuC submission
equivalent, is supposed to be called only once per GEM context engine,
followed by raise of a flag that prevents the function from being called
again. The function is expected to unwind its internal errors itself, so
it may be safely called once more after it returns an error.
In case of ring submission, the function first gets a reference to the
engine's legacy timeline and then allocates a VMA. If the VMA allocation
fails, e.g. when i915_vma_instance() called from inside is interrupted
with a signal, then ring_context_alloc() fails, leaving the timeline held
referenced. On next I915_GEM_EXECBUFFER2 IOCTL, another reference to the
timeline is got, and only that last one is put on successful completion.
As a consequence, the legacy timeline, with its underlying engine status
page's VMA object, is still held and not released on driver unbind.
Get the legacy timeline only after successful allocation of the context
engine's VMA.
v2: Add a note on other submission methods (Krzysztof Karas):
Both execlists and GuC submission use lrc_alloc() which seems free
from a similar issue.
(cherry picked from commit cc43422b3cc79eacff4c5a8ba0d224688ca9dd4f)
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmodes/displayport: do not index invalid pin_assignments
A poorly implemented DisplayPort Alt Mode port partner can indicate
that its pin assignment capabilities are greater than the maximum
value, DP_PIN_ASSIGN_F. In this case, calls to pin_assignment_show
will cause a BRK exception due to an out of bounds array access.
Prevent for loop in pin_assignment_show from accessing
invalid values in pin_assignments by adding DP_PIN_ASSIGN_MAX
value in typec_dp.h and using i < DP_PIN_ASSIGN_MAX as a loop
condition.
In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN
We found a few different systems hung up in writeback waiting on the same
page lock, and one task waiting on the NFS_LAYOUT_DRAIN bit in
pnfs_update_layout(), however the pnfs_layout_hdr's plh_outstanding count
was zero.
It seems most likely that this is another race between the waiter and waker
similar to commit ed0172af5d6f ("SUNRPC: Fix a race to wake a sync task").
Fix it up by applying the advised barrier.
In the Linux kernel, the following vulnerability has been resolved:
regulator: gpio: Fix the out-of-bounds access to drvdata::gpiods
drvdata::gpiods is supposed to hold an array of 'gpio_desc' pointers. But
the memory is allocated for only one pointer. This will lead to
out-of-bounds access later in the code if 'config::ngpios' is > 1. So
fix the code to allocate enough memory to hold 'config::ngpios' of GPIO
descriptors.
While at it, also move the check for memory allocation failure to be below
the allocation to make it more readable.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix iteration of extrefs during log replay
At __inode_add_ref() when processing extrefs, if we jump into the next
label we have an undefined value of victim_name.len, since we haven't
initialized it before we did the goto. This results in an invalid memory
access in the next iteration of the loop since victim_name.len was not
initialized to the length of the name of the current extref.
Fix this by initializing victim_name.len with the current extref's name
length.