In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid memory leak while enabling statistics
Driver uses monitor destination rings for extended statistics mode and
standalone monitor mode. In extended statistics mode, TLVs are parsed from
the buffer received from the monitor destination ring and assigned to the
ppdu_info structure to update per-packet statistics. In standalone monitor
mode, along with per-packet statistics, the packet data (payload) is
captured, and the driver updates per MSDU to mac80211.
When the AP interface is enabled, only extended statistics mode is
activated. As part of enabling monitor rings for collecting statistics,
the driver subscribes to HAL_RX_MPDU_START TLV in the filter
configuration. This TLV is received from the monitor destination ring, and
kzalloc for the mon_mpdu object occurs, which is not freed, leading to a
memory leak. The kzalloc for the mon_mpdu object is only required while
enabling the standalone monitor interface. This causes a memory leak while
enabling extended statistics mode in the driver.
Fix this memory leak by removing the kzalloc for the mon_mpdu object in
the HAL_RX_MPDU_START TLV handling. Additionally, remove the standalone
monitor mode handlings in the HAL_MON_BUF_ADDR and HAL_RX_MSDU_END TLVs.
These TLV tags will be handled properly when enabling standalone monitor
mode in the future.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
PM: hibernate: Avoid deadlock in hibernate_compressor_param_set()
syzbot reported a deadlock in lock_system_sleep() (see below).
The write operation to "/sys/module/hibernate/parameters/compressor"
conflicts with the registration of ieee80211 device, resulting in a deadlock
when attempting to acquire system_transition_mutex under param_lock.
To avoid this deadlock, change hibernate_compressor_param_set() to use
mutex_trylock() for attempting to acquire system_transition_mutex and
return -EBUSY when it fails.
Task flags need not be saved or adjusted before calling
mutex_trylock(&system_transition_mutex) because the caller is not going
to end up waiting for this mutex and if it runs concurrently with system
suspend in progress, it will be frozen properly when it returns to user
space.
syzbot report:
syz-executor895/5833 is trying to acquire lock:
ffffffff8e0828c8 (system_transition_mutex){+.+.}-{4:4}, at: lock_system_sleep+0x87/0xa0 kernel/power/main.c:56
but task is already holding lock:
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: kernel_param_lock kernel/params.c:607 [inline]
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: param_attr_store+0xe6/0x300 kernel/params.c:586
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (param_lock){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
ieee80211_rate_control_ops_get net/mac80211/rate.c:220 [inline]
rate_control_alloc net/mac80211/rate.c:266 [inline]
ieee80211_init_rate_ctrl_alg+0x18d/0x6b0 net/mac80211/rate.c:1015
ieee80211_register_hw+0x20cd/0x4060 net/mac80211/main.c:1531
mac80211_hwsim_new_radio+0x304e/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5558
init_mac80211_hwsim+0x432/0x8c0 drivers/net/wireless/virtual/mac80211_hwsim.c:6910
do_one_initcall+0x128/0x700 init/main.c:1257
do_initcall_level init/main.c:1319 [inline]
do_initcalls init/main.c:1335 [inline]
do_basic_setup init/main.c:1354 [inline]
kernel_init_freeable+0x5c7/0x900 init/main.c:1568
kernel_init+0x1c/0x2b0 init/main.c:1457
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #2 (rtnl_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
wg_pm_notification drivers/net/wireguard/device.c:80 [inline]
wg_pm_notification+0x49/0x180 drivers/net/wireguard/device.c:64
notifier_call_chain+0xb7/0x410 kernel/notifier.c:85
notifier_call_chain_robust kernel/notifier.c:120 [inline]
blocking_notifier_call_chain_robust kernel/notifier.c:345 [inline]
blocking_notifier_call_chain_robust+0xc9/0x170 kernel/notifier.c:333
pm_notifier_call_chain_robust+0x27/0x60 kernel/power/main.c:102
snapshot_open+0x189/0x2b0 kernel/power/user.c:77
misc_open+0x35a/0x420 drivers/char/misc.c:179
chrdev_open+0x237/0x6a0 fs/char_dev.c:414
do_dentry_open+0x735/0x1c40 fs/open.c:956
vfs_open+0x82/0x3f0 fs/open.c:1086
do_open fs/namei.c:3830 [inline]
path_openat+0x1e88/0x2d80 fs/namei.c:3989
do_filp_open+0x20c/0x470 fs/namei.c:4016
do_sys_openat2+0x17a/0x1e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x175/0x210 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 ((pm_chain_head).rwsem){++++}-{4:4}:
down_read+0x9a/0x330 kernel/locking/rwsem.c:1524
blocking_notifier_call_chain_robust kerne
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix hang while freeing sigtrap event
Perf can hang while freeing a sigtrap event if a related deferred
signal hadn't managed to be sent before the file got closed:
perf_event_overflow()
task_work_add(perf_pending_task)
fput()
task_work_add(____fput())
task_work_run()
____fput()
perf_release()
perf_event_release_kernel()
_free_event()
perf_pending_task_sync()
task_work_cancel() -> FAILED
rcuwait_wait_event()
Once task_work_run() is running, the list of pending callbacks is
removed from the task_struct and from this point on task_work_cancel()
can't remove any pending and not yet started work items, hence the
task_work_cancel() failure and the hang on rcuwait_wait_event().
Task work could be changed to remove one work at a time, so a work
running on the current task can always cancel a pending one, however
the wait / wake design is still subject to inverted dependencies when
remote targets are involved, as pictured by Oleg:
T1 T2
fd = perf_event_open(pid => T2->pid); fd = perf_event_open(pid => T1->pid);
close(fd) close(fd)
<IRQ> <IRQ>
perf_event_overflow() perf_event_overflow()
task_work_add(perf_pending_task) task_work_add(perf_pending_task)
</IRQ> </IRQ>
fput() fput()
task_work_add(____fput()) task_work_add(____fput())
task_work_run() task_work_run()
____fput() ____fput()
perf_release() perf_release()
perf_event_release_kernel() perf_event_release_kernel()
_free_event() _free_event()
perf_pending_task_sync() perf_pending_task_sync()
rcuwait_wait_event() rcuwait_wait_event()
Therefore the only option left is to acquire the event reference count
upon queueing the perf task work and release it from the task work, just
like it was done before 3a5465418f5f ("perf: Fix event leak upon exec and file release")
but without the leaks it fixed.
Some adjustments are necessary to make it work:
* A child event might dereference its parent upon freeing. Care must be
taken to release the parent last.
* Some places assuming the event doesn't have any reference held and
therefore can be freed right away must instead put the reference and
let the reference counting to its job.
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix NULL pointer deference in mtk_iommu_device_group
Currently, mtk_iommu calls during probe iommu_device_register before
the hw_list from driver data is initialized. Since iommu probing issue
fix, it leads to NULL pointer dereference in mtk_iommu_device_group when
hw_list is accessed with list_first_entry (not null safe).
So, change the call order to ensure iommu_device_register is called
after the driver data are initialized.
In the Linux kernel, the following vulnerability has been resolved:
net: ppp: Add bound checking for skb data on ppp_sync_txmung
Ensure we have enough data in linear buffer from skb before accessing
initial bytes. This prevents potential out-of-bounds accesses
when processing short packets.
When ppp_sync_txmung receives an incoming package with an empty
payload:
(remote) gef⤠p *(struct pppoe_hdr *) (skb->head + skb->network_header)
$18 = {
type = 0x1,
ver = 0x1,
code = 0x0,
sid = 0x2,
length = 0x0,
tag = 0xffff8880371cdb96
}
from the skb struct (trimmed)
tail = 0x16,
end = 0x140,
head = 0xffff88803346f400 "4",
data = 0xffff88803346f416 ":\377",
truesize = 0x380,
len = 0x0,
data_len = 0x0,
mac_len = 0xe,
hdr_len = 0x0,
it is not safe to access data[2].
[pabeni@redhat.com: fixed subj typo]
In the Linux kernel, the following vulnerability has been resolved:
PCI: vmd: Make vmd_dev::cfg_lock a raw_spinlock_t type
The access to the PCI config space via pci_ops::read and pci_ops::write is
a low-level hardware access. The functions can be accessed with disabled
interrupts even on PREEMPT_RT. The pci_lock is a raw_spinlock_t for this
purpose.
A spinlock_t becomes a sleeping lock on PREEMPT_RT, so it cannot be
acquired with disabled interrupts. The vmd_dev::cfg_lock is accessed in
the same context as the pci_lock.
Make vmd_dev::cfg_lock a raw_spinlock_t type so it can be used with
interrupts disabled.
This was reported as:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
Call Trace:
rt_spin_lock+0x4e/0x130
vmd_pci_read+0x8d/0x100 [vmd]
pci_user_read_config_byte+0x6f/0xe0
pci_read_config+0xfe/0x290
sysfs_kf_bin_read+0x68/0x90
[bigeasy: reword commit message]
Tested-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
[kwilczynski: commit log]
[bhelgaas: add back report info from
https://lore.kernel.org/lkml/20241218115951.83062-1-ryotkkr98@gmail.com/]
In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-bounds access in f2fs_truncate_inode_blocks()
syzbot reports an UBSAN issue as below:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in fs/f2fs/node.h:381:10
index 18446744073709550692 is out of range for type '__le32[5]' (aka 'unsigned int[5]')
CPU: 0 UID: 0 PID: 5318 Comm: syz.0.0 Not tainted 6.14.0-rc3-syzkaller-00060-g6537cfb395f3 #0
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_out_of_bounds+0x121/0x150 lib/ubsan.c:429
get_nid fs/f2fs/node.h:381 [inline]
f2fs_truncate_inode_blocks+0xa5e/0xf60 fs/f2fs/node.c:1181
f2fs_do_truncate_blocks+0x782/0x1030 fs/f2fs/file.c:808
f2fs_truncate_blocks+0x10d/0x300 fs/f2fs/file.c:836
f2fs_truncate+0x417/0x720 fs/f2fs/file.c:886
f2fs_file_write_iter+0x1bdb/0x2550 fs/f2fs/file.c:5093
aio_write+0x56b/0x7c0 fs/aio.c:1633
io_submit_one+0x8a7/0x18a0 fs/aio.c:2052
__do_sys_io_submit fs/aio.c:2111 [inline]
__se_sys_io_submit+0x171/0x2e0 fs/aio.c:2081
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f238798cde9
index 18446744073709550692 (decimal, unsigned long long)
= 0xfffffffffffffc64 (hexadecimal, unsigned long long)
= -924 (decimal, long long)
In f2fs_truncate_inode_blocks(), UBSAN detects that get_nid() tries to
access .i_nid[-924], it means both offset[0] and level should zero.
The possible case should be in f2fs_do_truncate_blocks(), we try to
truncate inode size to zero, however, dn.ofs_in_node is zero and
dn.node_page is not an inode page, so it fails to truncate inode page,
and then pass zeroed free_from to f2fs_truncate_inode_blocks(), result
in this issue.
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
I guess the reason why dn.node_page is not an inode page could be: there
are multiple nat entries share the same node block address, once the node
block address was reused, f2fs_get_node_page() may load a non-inode block.
Let's add a sanity check for such condition to avoid out-of-bounds access
issue.
In the Linux kernel, the following vulnerability has been resolved:
jfs: add sanity check for agwidth in dbMount
The width in dmapctl of the AG is zero, it trigger a divide error when
calculating the control page level in dbAllocAG.
To avoid this issue, add a check for agwidth in dbAllocAG.