In the Linux kernel, the following vulnerability has been resolved:
Input: iforce - wake up after clearing IFORCE_XMIT_RUNNING flag
syzbot is reporting hung task at __input_unregister_device() [1], for
iforce_close() waiting at wait_event_interruptible() with dev->mutex held
is blocking input_disconnect_device() from __input_unregister_device().
It seems that the cause is simply that commit c2b27ef672992a20 ("Input:
iforce - wait for command completion when closing the device") forgot to
call wake_up() after clear_bit().
Fix this problem by introducing a helper that calls clear_bit() followed
by wake_up_all().
In the Linux kernel, the following vulnerability has been resolved:
kcm: fix strp_init() order and cleanup
strp_init() is called just a few lines above this csk->sk_user_data
check, it also initializes strp->work etc., therefore, it is
unnecessary to call strp_done() to cancel the freshly initialized
work.
And if sk_user_data is already used by KCM, psock->strp should not be
touched, particularly strp->work state, so we need to move strp_init()
after the csk->sk_user_data check.
This also makes a lockdep warning reported by syzbot go away.
In the Linux kernel, the following vulnerability has been resolved:
media: mceusb: Use new usb_control_msg_*() routines
Automatic kernel fuzzing led to a WARN about invalid pipe direction in
the mceusb driver:
------------[ cut here ]------------
usb 6-1: BOGUS control dir, pipe 80000380 doesn't match bRequestType 40
WARNING: CPU: 0 PID: 2465 at drivers/usb/core/urb.c:410
usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410
Modules linked in:
CPU: 0 PID: 2465 Comm: kworker/0:2 Not tainted 5.19.0-rc4-00208-g69cb6c6556ad #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410
Code: 7c 24 40 e8 ac 23 91 fd 48 8b 7c 24 40 e8 b2 70 1b ff 45 89 e8
44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 a0 30 a9 86 e8 48 07 11 02 <0f> 0b
e9 1c f0 ff ff e8 7e 23 91 fd 0f b6 1d 63 22 83 05 31 ff 41
RSP: 0018:ffffc900032becf0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8881100f3058 RCX: 0000000000000000
RDX: ffffc90004961000 RSI: ffff888114c6d580 RDI: fffff52000657d90
RBP: ffff888105ad90f0 R08: ffffffff812c3638 R09: 0000000000000000
R10: 0000000000000005 R11: ffffed1023504ef1 R12: ffff888105ad9000
R13: 0000000000000040 R14: 0000000080000380 R15: ffff88810ba96500
FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe810bda58 CR3: 000000010b720000 CR4: 0000000000350ef0
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4c0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x31c/0x4a0 drivers/usb/core/message.c:153
mceusb_gen1_init drivers/media/rc/mceusb.c:1431 [inline]
mceusb_dev_probe+0x258e/0x33f0 drivers/media/rc/mceusb.c:1807
The reason for the warning is clear enough; the driver sends an
unusual read request on endpoint 0 but does not set the USB_DIR_IN bit
in the bRequestType field.
More importantly, the whole situation can be avoided and the driver
simplified by converting it over to the relatively new
usb_control_msg_recv() and usb_control_msg_send() routines. That's
what this fix does.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix small mempool leak in SMB2_negotiate()
In some cases of failure (dialect mismatches) in SMB2_negotiate(), after
the request is sent, the checks would return -EIO when they should be
rather setting rc = -EIO and jumping to neg_exit to free the response
buffer from mempool.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix race of buffer access at PCM OSS layer
The PCM OSS layer tries to clear the buffer with the silence data at
initialization (or reconfiguration) of a stream with the explicit call
of snd_pcm_format_set_silence() with runtime->dma_area. But this may
lead to a UAF because the accessed runtime->dma_area might be freed
concurrently, as it's performed outside the PCM ops.
For avoiding it, move the code into the PCM core and perform it inside
the buffer access lock, so that it won't be changed during the
operation.
In the Linux kernel, the following vulnerability has been resolved:
crypto: algif_hash - fix double free in hash_accept
If accept(2) is called on socket type algif_hash with
MSG_MORE flag set and crypto_ahash_import fails,
sk2 is freed. However, it is also freed in af_alg_release,
leading to slab-use-after-free error.
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: pci-epf-test: Fix double free that causes kernel to oops
Fix a kernel oops found while testing the stm32_pcie Endpoint driver
with handling of PERST# deassertion:
During EP initialization, pci_epf_test_alloc_space() allocates all BARs,
which are further freed if epc_set_bar() fails (for instance, due to no
free inbound window).
However, when pci_epc_set_bar() fails, the error path:
pci_epc_set_bar() ->
pci_epf_free_space()
does not clear the previous assignment to epf_test->reg[bar].
Then, if the host reboots, the PERST# deassertion restarts the BAR
allocation sequence with the same allocation failure (no free inbound
window), creating a double free situation since epf_test->reg[bar] was
deallocated and is still non-NULL.
Thus, make sure that pci_epf_alloc_space() and pci_epf_free_space()
invocations are symmetric, and as such, set epf_test->reg[bar] to NULL
when memory is freed.
[kwilczynski: commit log]
In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Check return value from memblock_phys_alloc_range()
At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of
contiguous free memory available at this point, the kernel will crash
and burn because memblock_phys_alloc_range() returns 0 on failure,
which leads memblock_phys_free() to throw the first 4 MiB of physical
memory to the wolves.
At a minimum it should fail gracefully with a meaningful diagnostic,
but in fact everything seems to work fine without the weird reserve
allocation.
In the Linux kernel, the following vulnerability has been resolved:
libnvdimm/labels: Fix divide error in nd_label_data_init()
If a faulty CXL memory device returns a broken zero LSA size in its
memory device information (Identify Memory Device (Opcode 4000h), CXL
spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm
driver:
Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm]
Code and flow:
1) CXL Command 4000h returns LSA size = 0
2) config_size is assigned to zero LSA size (CXL pmem driver):
drivers/cxl/pmem.c: .config_size = mds->lsa_size,
3) max_xfer is set to zero (nvdimm driver):
drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size);
4) A subsequent DIV_ROUND_UP() causes a division by zero:
drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */
drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer,
drivers/nvdimm/label.c- config_size);
Fix this by checking the config size parameter by extending an
existing check.
In the Linux kernel, the following vulnerability has been resolved:
vhost-scsi: protect vq->log_used with vq->mutex
The vhost-scsi completion path may access vq->log_base when vq->log_used is
already set to false.
vhost-thread QEMU-thread
vhost_scsi_complete_cmd_work()
-> vhost_add_used()
-> vhost_add_used_n()
if (unlikely(vq->log_used))
QEMU disables vq->log_used
via VHOST_SET_VRING_ADDR.
mutex_lock(&vq->mutex);
vq->log_used = false now!
mutex_unlock(&vq->mutex);
QEMU gfree(vq->log_base)
log_used()
-> log_write(vq->log_base)
Assuming the VMM is QEMU. The vq->log_base is from QEMU userpace and can be
reclaimed via gfree(). As a result, this causes invalid memory writes to
QEMU userspace.
The control queue path has the same issue.