In the Linux kernel, the following vulnerability has been resolved:
gpio: pca953x: fix pca953x_irq_bus_sync_unlock race
Ensure that `i2c_lock' is held when setting interrupt latch and mask in
pca953x_irq_bus_sync_unlock() in order to avoid races.
The other (non-probe) call site pca953x_gpio_set_multiple() ensures the
lock is held before calling pca953x_write_regs().
The problem occurred when a request raced against irq_bus_sync_unlock()
approximately once per thousand reboots on an i.MX8MP based system.
* Normal case
0-0022: write register AI|3a {03,02,00,00,01} Input latch P0
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
* Race case
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register ***
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
In the Linux kernel, the following vulnerability has been resolved:
libceph: fix race between delayed_work() and ceph_monc_stop()
The way the delayed work is handled in ceph_monc_stop() is prone to
races with mon_fault() and possibly also finish_hunting(). Both of
these can requeue the delayed work which wouldn't be canceled by any of
the following code in case that happens after cancel_delayed_work_sync()
runs -- __close_session() doesn't mess with the delayed work in order
to avoid interfering with the hunting interval logic. This part was
missed in commit b5d91704f53e ("libceph: behave in mon_fault() if
cur_mon < 0") and use-after-free can still ensue on monc and objects
that hang off of it, with monc->auth and monc->monmap being
particularly susceptible to quickly being reused.
To fix this:
- clear monc->cur_mon and monc->hunting as part of closing the session
in ceph_monc_stop()
- bail from delayed_work() if monc->cur_mon is cleared, similar to how
it's done in mon_fault() and finish_hunting() (based on monc->hunting)
- call cancel_delayed_work_sync() after the session is closed
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Prevent OOB read/write in usb_string_copy()
Userspace provided string 's' could trivially have the length zero. Left
unchecked this will firstly result in an OOB read in the form
`if (str[0 - 1] == '\n') followed closely by an OOB write in the form
`str[0 - 1] = '\0'`.
There is already a validating check to catch strings that are too long.
Let's supply an additional check for invalid strings that are too short.
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Validate payload length before processing block
Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load()
to be done before the block is processed.
The check that the length of a block payload does not exceed the number
of remaining bytes in the firwmware file buffer was being done near the
end of the loop iteration. However, some code before that check used the
length field without validating it.
In the Linux kernel, the following vulnerability has been resolved:
crypto: aead,cipher - zeroize key buffer after use
I.G 9.7.B for FIPS 140-3 specifies that variables temporarily holding
cryptographic information should be zeroized once they are no longer
needed. Accomplish this by using kfree_sensitive for buffers that
previously held the private key.
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Sanitise num_phys
Information is stored in mr_sas_port->phy_mask, values larger then size of
this field shouldn't be allowed.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: check validation of fault attrs in f2fs_build_fault_attr()
- It missed to check validation of fault attrs in parse_options(),
let's fix to add check condition in f2fs_build_fault_attr().
- Use f2fs_build_fault_attr() in __sbi_store() to clean up code.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Avoid uninitialized value in BPF_CORE_READ_BITFIELD
[Changes from V1:
- Use a default branch in the switch statement to initialize `val'.]
GCC warns that `val' may be used uninitialized in the
BPF_CRE_READ_BITFIELD macro, defined in bpf_core_read.h as:
[...]
unsigned long long val; \
[...] \
switch (__CORE_RELO(s, field, BYTE_SIZE)) { \
case 1: val = *(const unsigned char *)p; break; \
case 2: val = *(const unsigned short *)p; break; \
case 4: val = *(const unsigned int *)p; break; \
case 8: val = *(const unsigned long long *)p; break; \
} \
[...]
val; \
} \
This patch adds a default entry in the switch statement that sets
`val' to zero in order to avoid the warning, and random values to be
used in case __builtin_preserve_field_info returns unexpected values
for BPF_FIELD_BYTE_SIZE.
Tested in bpf-next master.
No regressions.
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: tda10048: Fix integer overflow
state->xtal_hz can be up to 16M, so it can overflow a 32 bit integer
when multiplied by pll_mfactor.
Create a new 64 bit variable to hold the calculations.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: replace skb_put with skb_put_zero
Avoid potentially reusing uninitialized data