In the Linux kernel, the following vulnerability has been resolved:
virtio-net: ensure the received length does not exceed allocated size
In xdp_linearize_page, when reading the following buffers from the ring,
we forget to check the received length with the true allocate size. This
can lead to an out-of-bound read. This commit adds that missing check.
In the Linux kernel, the following vulnerability has been resolved:
rose: fix dangling neighbour pointers in rose_rt_device_down()
There are two bugs in rose_rt_device_down() that can cause
use-after-free:
1. The loop bound `t->count` is modified within the loop, which can
cause the loop to terminate early and miss some entries.
2. When removing an entry from the neighbour array, the subsequent entries
are moved up to fill the gap, but the loop index `i` is still
incremented, causing the next entry to be skipped.
For example, if a node has three neighbours (A, A, B) with count=3 and A
is being removed, the second A is not checked.
i=0: (A, A, B) -> (A, B) with count=2
^ checked
i=1: (A, B) -> (A, B) with count=2
^ checked (B, not A!)
i=2: (doesn't occur because i < count is false)
This leaves the second A in the array with count=2, but the rose_neigh
structure has been freed. Code that accesses these entries assumes that
the first `count` entries are valid pointers, causing a use-after-free
when it accesses the dangling pointer.
Fix both issues by iterating over the array in reverse order with a fixed
loop bound. This ensures that all entries are examined and that the removal
of an entry doesn't affect subsequent iterations.
In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Fix in_atomic() handling in do_secure_storage_access()
Kernel user spaces accesses to not exported pages in atomic context
incorrectly try to resolve the page fault.
With debug options enabled call traces like this can be seen:
BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
Preemption disabled at:
[<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0
CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39
Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT
Tainted: [W]=WARN
Hardware name: IBM 3931 A01 703 (LPAR)
Call Trace:
[<00000383e990d282>] dump_stack_lvl+0xa2/0xe8
[<00000383e99bf152>] __might_resched+0x292/0x2d0
[<00000383eaa7c374>] down_read+0x34/0x2d0
[<00000383e99432f8>] do_secure_storage_access+0x108/0x360
[<00000383eaa724b0>] __do_pgm_check+0x130/0x220
[<00000383eaa842e4>] pgm_check_handler+0x114/0x160
[<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0
([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0)
[<00000383e9c45eae>] generic_perform_write+0x16e/0x310
[<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160
[<00000383e9da0de4>] vfs_write+0x1c4/0x460
[<00000383e9da123c>] ksys_write+0x7c/0x100
[<00000383eaa7284e>] __do_syscall+0x15e/0x280
[<00000383eaa8417e>] system_call+0x6e/0x90
INFO: lockdep is turned off.
It is not allowed to take the mmap_lock while in atomic context. Therefore
handle such a secure storage access fault as if the accessed page is not
mapped: the uaccess function will return -EFAULT, and the caller has to
deal with this. Usually this means that the access is retried in process
context, which allows to resolve the page fault (or in this case export the
page).
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check dce_hwseq before dereferencing it
[WHAT]
hws was checked for null earlier in dce110_blank_stream, indicating hws
can be null, and should be checked whenever it is used.
(cherry picked from commit 79db43611ff61280b6de58ce1305e0b2ecf675ad)
In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: fix race between handle_posix_cpu_timers() and posix_cpu_timer_del()
If an exiting non-autoreaping task has already passed exit_notify() and
calls handle_posix_cpu_timers() from IRQ, it can be reaped by its parent
or debugger right after unlock_task_sighand().
If a concurrent posix_cpu_timer_del() runs at that moment, it won't be
able to detect timer->it.cpu.firing != 0: cpu_timer_task_rcu() and/or
lock_task_sighand() will fail.
Add the tsk->exit_state check into run_posix_cpu_timers() to fix this.
This fix is not needed if CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, because
exit_task_work() is called before exit_notify(). But the check still
makes sense, task_work_add(&tsk->posix_cputimers_work.work) will fail
anyway in this case.
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: fix acpi operand cache leak in dswstate.c
ACPICA commit 987a3b5cf7175916e2a4b6ea5b8e70f830dfe732
I found an ACPI cache leak in ACPI early termination and boot continuing case.
When early termination occurs due to malicious ACPI table, Linux kernel
terminates ACPI function and continues to boot process. While kernel terminates
ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak.
Boot log of ACPI operand cache leak is as follows:
>[ 0.585957] ACPI: Added _OSI(Module Device)
>[ 0.587218] ACPI: Added _OSI(Processor Device)
>[ 0.588530] ACPI: Added _OSI(3.0 _SCP Extensions)
>[ 0.589790] ACPI: Added _OSI(Processor Aggregator Device)
>[ 0.591534] ACPI Error: Illegal I/O port address/length above 64K: C806E00000004002/0x2 (20170303/hwvalid-155)
>[ 0.594351] ACPI Exception: AE_LIMIT, Unable to initialize fixed events (20170303/evevent-88)
>[ 0.597858] ACPI: Unable to start the ACPI Interpreter
>[ 0.599162] ACPI Error: Could not remove SCI handler (20170303/evmisc-281)
>[ 0.601836] kmem_cache_destroy Acpi-Operand: Slab cache still has objects
>[ 0.603556] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26
>[ 0.605159] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006
>[ 0.609177] Call Trace:
>[ 0.610063] ? dump_stack+0x5c/0x81
>[ 0.611118] ? kmem_cache_destroy+0x1aa/0x1c0
>[ 0.612632] ? acpi_sleep_proc_init+0x27/0x27
>[ 0.613906] ? acpi_os_delete_cache+0xa/0x10
>[ 0.617986] ? acpi_ut_delete_caches+0x3f/0x7b
>[ 0.619293] ? acpi_terminate+0xa/0x14
>[ 0.620394] ? acpi_init+0x2af/0x34f
>[ 0.621616] ? __class_create+0x4c/0x80
>[ 0.623412] ? video_setup+0x7f/0x7f
>[ 0.624585] ? acpi_sleep_proc_init+0x27/0x27
>[ 0.625861] ? do_one_initcall+0x4e/0x1a0
>[ 0.627513] ? kernel_init_freeable+0x19e/0x21f
>[ 0.628972] ? rest_init+0x80/0x80
>[ 0.630043] ? kernel_init+0xa/0x100
>[ 0.631084] ? ret_from_fork+0x25/0x30
>[ 0.633343] vgaarb: loaded
>[ 0.635036] EDAC MC: Ver: 3.0.0
>[ 0.638601] PCI: Probing PCI hardware
>[ 0.639833] PCI host bridge to bus 0000:00
>[ 0.641031] pci_bus 0000:00: root bus resource [io 0x0000-0xffff]
> ... Continue to boot and log is omitted ...
I analyzed this memory leak in detail and found acpi_ds_obj_stack_pop_and_
delete() function miscalculated the top of the stack. acpi_ds_obj_stack_push()
function uses walk_state->operand_index for start position of the top, but
acpi_ds_obj_stack_pop_and_delete() function considers index 0 for it.
Therefore, this causes acpi operand memory leak.
This cache leak causes a security threat because an old kernel (<= 4.9) shows
memory locations of kernel functions in stack dump. Some malicious users
could use this information to neutralize kernel ASLR.
I made a patch to fix ACPI operand cache leak.
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix UAF when lookup kallsym after ftrace disabled
The following issue happens with a buggy module:
BUG: unable to handle page fault for address: ffffffffc05d0218
PGD 1bd66f067 P4D 1bd66f067 PUD 1bd671067 PMD 101808067 PTE 0
Oops: Oops: 0000 [#1] SMP KASAN PTI
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
RIP: 0010:sized_strscpy+0x81/0x2f0
RSP: 0018:ffff88812d76fa08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffffffc0601010 RCX: dffffc0000000000
RDX: 0000000000000038 RSI: dffffc0000000000 RDI: ffff88812608da2d
RBP: 8080808080808080 R08: ffff88812608da2d R09: ffff88812608da68
R10: ffff88812608d82d R11: ffff88812608d810 R12: 0000000000000038
R13: ffff88812608da2d R14: ffffffffc05d0218 R15: fefefefefefefeff
FS: 00007fef552de740(0000) GS:ffff8884251c7000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc05d0218 CR3: 00000001146f0000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ftrace_mod_get_kallsym+0x1ac/0x590
update_iter_mod+0x239/0x5b0
s_next+0x5b/0xa0
seq_read_iter+0x8c9/0x1070
seq_read+0x249/0x3b0
proc_reg_read+0x1b0/0x280
vfs_read+0x17f/0x920
ksys_read+0xf3/0x1c0
do_syscall_64+0x5f/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The above issue may happen as follows:
(1) Add kprobe tracepoint;
(2) insmod test.ko;
(3) Module triggers ftrace disabled;
(4) rmmod test.ko;
(5) cat /proc/kallsyms; --> Will trigger UAF as test.ko already removed;
ftrace_mod_get_kallsym()
...
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
...
The problem is when a module triggers an issue with ftrace and
sets ftrace_disable. The ftrace_disable is set when an anomaly is
discovered and to prevent any more damage, ftrace stops all text
modification. The issue that happened was that the ftrace_disable stops
more than just the text modification.
When a module is loaded, its init functions can also be traced. Because
kallsyms deletes the init functions after a module has loaded, ftrace
saves them when the module is loaded and function tracing is enabled. This
allows the output of the function trace to show the init function names
instead of just their raw memory addresses.
When a module is removed, ftrace_release_mod() is called, and if
ftrace_disable is set, it just returns without doing anything more. The
problem here is that it leaves the mod_list still around and if kallsyms
is called, it will call into this code and access the module memory that
has already been freed as it will return:
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
Where the "mod" no longer exists and triggers a UAF bug.
In the Linux kernel, the following vulnerability has been resolved:
wifi: p54: prevent buffer-overflow in p54_rx_eeprom_readback()
Robert Morris reported:
|If a malicious USB device pretends to be an Intersil p54 wifi
|interface and generates an eeprom_readback message with a large
|eeprom->v1.len, p54_rx_eeprom_readback() will copy data from the
|message beyond the end of priv->eeprom.
|
|static void p54_rx_eeprom_readback(struct p54_common *priv,
| struct sk_buff *skb)
|{
| struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
| struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
|
| if (priv->fw_var >= 0x509) {
| memcpy(priv->eeprom, eeprom->v2.data,
| le16_to_cpu(eeprom->v2.len));
| } else {
| memcpy(priv->eeprom, eeprom->v1.data,
| le16_to_cpu(eeprom->v1.len));
| }
| [...]
The eeprom->v{1,2}.len is set by the driver in p54_download_eeprom().
The device is supposed to provide the same length back to the driver.
But yes, it's possible (like shown in the report) to alter the value
to something that causes a crash/panic due to overrun.
This patch addresses the issue by adding the size to the common device
context, so p54_rx_eeprom_readback no longer relies on possibly tampered
values... That said, it also checks if the "firmware" altered the value
and no longer copies them.
The one, small saving grace is: Before the driver tries to read the eeprom,
it needs to upload >a< firmware. the vendor firmware has a proprietary
license and as a reason, it is not present on most distributions by
default.