An issue was discovered in Squid through 4.7. When handling the tag esi:when when ESI is enabled, Squid calls ESIExpression::Evaluate. This function uses a fixed stack buffer to hold the expression while it's being evaluated. When processing the expression, it could either evaluate the top of the stack, or add a new member to the stack. When adding a new member, there is no check to ensure that the stack won't overflow.
An issue was discovered in Squid through 4.7 and 5. When receiving a request, Squid checks its cache to see if it can serve up a response. It does this by making a MD5 hash of the absolute URL of the request. If found, it servers the request. The absolute URL can include the decoded UserInfo (username and password) for certain protocols. This decoded info is prepended to the domain. This allows an attacker to provide a username that has special characters to delimit the domain, and treat the rest of the URL as a path or query string. An attacker could first make a request to their domain using an encoded username, then when a request for the target domain comes in that decodes to the exact URL, it will serve the attacker's HTML instead of the real HTML. On Squid servers that also act as reverse proxies, this allows an attacker to gain access to features that only reverse proxies can use, such as ESI.
An issue was discovered in Squid through 4.7. When Squid is parsing ESI, it keeps the ESI elements in ESIContext. ESIContext contains a buffer for holding a stack of ESIElements. When a new ESIElement is parsed, it is added via addStackElement. addStackElement has a check for the number of elements in this buffer, but it's off by 1, leading to a Heap Overflow of 1 element. The overflow is within the same structure so it can't affect adjacent memory blocks, and thus just leads to a crash while processing.
An issue was discovered in Squid through 4.7. When handling requests from users, Squid checks its rules to see if the request should be denied. Squid by default comes with rules to block access to the Cache Manager, which serves detailed server information meant for the maintainer. This rule is implemented via url_regex. The handler for url_regex rules URL decodes an incoming request. This allows an attacker to encode their URL to bypass the url_regex check, and gain access to the blocked resource.
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Parser). Supported versions that are affected are 8.0.19 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Client product of Oracle MySQL (component: C API). Supported versions that are affected are 5.6.47 and prior, 5.7.29 and prior and 8.0.18 and prior. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise MySQL Client. Successful attacks of this vulnerability can result in unauthorized read access to a subset of MySQL Client accessible data. CVSS 3.0 Base Score 3.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N).
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.19 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.19 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: PS). Supported versions that are affected are 8.0.19 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.19 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).