Vulnerabilities
Vulnerable Software
Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: drm/xe/pf: Clear all LMTT pages on alloc Our LMEM buffer objects are not cleared by default on alloc and during VF provisioning we only setup LMTT PTEs for the actually provisioned LMEM range. But beyond that valid range we might leave some stale data that could either point to some other VFs allocations or even to the PF pages. Explicitly clear all new LMTT page to avoid the risk that a malicious VF would try to exploit that gap. While around add asserts to catch any undesired PTE overwrites and low-level debug traces to track LMTT PT life-cycle. (cherry picked from commit 3fae6918a3e27cce20ded2551f863fb05d4bef8d)
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: lib/alloc_tag: do not acquire non-existent lock in alloc_tag_top_users() alloc_tag_top_users() attempts to lock alloc_tag_cttype->mod_lock even when the alloc_tag_cttype is not allocated because: 1) alloc tagging is disabled because mem profiling is disabled (!alloc_tag_cttype) 2) alloc tagging is enabled, but not yet initialized (!alloc_tag_cttype) 3) alloc tagging is enabled, but failed initialization (!alloc_tag_cttype or IS_ERR(alloc_tag_cttype)) In all cases, alloc_tag_cttype is not allocated, and therefore alloc_tag_top_users() should not attempt to acquire the semaphore. This leads to a crash on memory allocation failure by attempting to acquire a non-existent semaphore: Oops: general protection fault, probably for non-canonical address 0xdffffc000000001b: 0000 [#3] SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x00000000000000d8-0x00000000000000df] CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G D 6.16.0-rc2 #1 VOLUNTARY Tainted: [D]=DIE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:down_read_trylock+0xaa/0x3b0 Code: d0 7c 08 84 d2 0f 85 a0 02 00 00 8b 0d df 31 dd 04 85 c9 75 29 48 b8 00 00 00 00 00 fc ff df 48 8d 6b 68 48 89 ea 48 c1 ea 03 <80> 3c 02 00 0f 85 88 02 00 00 48 3b 5b 68 0f 85 53 01 00 00 65 ff RSP: 0000:ffff8881002ce9b8 EFLAGS: 00010016 RAX: dffffc0000000000 RBX: 0000000000000070 RCX: 0000000000000000 RDX: 000000000000001b RSI: 000000000000000a RDI: 0000000000000070 RBP: 00000000000000d8 R08: 0000000000000001 R09: ffffed107dde49d1 R10: ffff8883eef24e8b R11: ffff8881002cec20 R12: 1ffff11020059d37 R13: 00000000003fff7b R14: ffff8881002cec20 R15: dffffc0000000000 FS: 00007f963f21d940(0000) GS:ffff888458ca6000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f963f5edf71 CR3: 000000010672c000 CR4: 0000000000350ef0 Call Trace: <TASK> codetag_trylock_module_list+0xd/0x20 alloc_tag_top_users+0x369/0x4b0 __show_mem+0x1cd/0x6e0 warn_alloc+0x2b1/0x390 __alloc_frozen_pages_noprof+0x12b9/0x21a0 alloc_pages_mpol+0x135/0x3e0 alloc_slab_page+0x82/0xe0 new_slab+0x212/0x240 ___slab_alloc+0x82a/0xe00 </TASK> As David Wang points out, this issue became easier to trigger after commit 780138b12381 ("alloc_tag: check mem_profiling_support in alloc_tag_init"). Before the commit, the issue occurred only when it failed to allocate and initialize alloc_tag_cttype or if a memory allocation fails before alloc_tag_init() is called. After the commit, it can be easily triggered when memory profiling is compiled but disabled at boot. To properly determine whether alloc_tag_init() has been called and its data structures initialized, verify that alloc_tag_cttype is a valid pointer before acquiring the semaphore. If the variable is NULL or an error value, it has not been properly initialized. In such a case, just skip and do not attempt to acquire the semaphore. [harry.yoo@oracle.com: v3]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: io_uring/zcrx: fix pp destruction warnings With multiple page pools and in some other cases we can have allocated niovs on page pool destruction. Remove a misplaced warning checking that all niovs are returned to zcrx on io_pp_zc_destroy(). It was reported before but apparently got lost.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: discard erroneous disassoc frames on STA interface When operating in concurrent STA/AP mode with host MLME enabled, the firmware incorrectly sends disassociation frames to the STA interface when clients disconnect from the AP interface. This causes kernel warnings as the STA interface processes disconnect events that don't apply to it: [ 1303.240540] WARNING: CPU: 0 PID: 513 at net/wireless/mlme.c:141 cfg80211_process_disassoc+0x78/0xec [cfg80211] [ 1303.250861] Modules linked in: 8021q garp stp mrp llc rfcomm bnep btnxpuart nls_iso8859_1 nls_cp437 onboard_us [ 1303.327651] CPU: 0 UID: 0 PID: 513 Comm: kworker/u9:2 Not tainted 6.16.0-rc1+ #3 PREEMPT [ 1303.335937] Hardware name: Toradex Verdin AM62 WB on Verdin Development Board (DT) [ 1303.343588] Workqueue: MWIFIEX_RX_WORK_QUEUE mwifiex_rx_work_queue [mwifiex] [ 1303.350856] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1303.357904] pc : cfg80211_process_disassoc+0x78/0xec [cfg80211] [ 1303.364065] lr : cfg80211_process_disassoc+0x70/0xec [cfg80211] [ 1303.370221] sp : ffff800083053be0 [ 1303.373590] x29: ffff800083053be0 x28: 0000000000000000 x27: 0000000000000000 [ 1303.380855] x26: 0000000000000000 x25: 00000000ffffffff x24: ffff000002c5b8ae [ 1303.388120] x23: ffff000002c5b884 x22: 0000000000000001 x21: 0000000000000008 [ 1303.395382] x20: ffff000002c5b8ae x19: ffff0000064dd408 x18: 0000000000000006 [ 1303.402646] x17: 3a36333a61623a30 x16: 32206d6f72662063 x15: ffff800080bfe048 [ 1303.409910] x14: ffff000003625300 x13: 0000000000000001 x12: 0000000000000000 [ 1303.417173] x11: 0000000000000002 x10: ffff000003958600 x9 : ffff000003625300 [ 1303.424434] x8 : ffff00003fd9ef40 x7 : ffff0000039fc280 x6 : 0000000000000002 [ 1303.431695] x5 : ffff0000038976d4 x4 : 0000000000000000 x3 : 0000000000003186 [ 1303.438956] x2 : 000000004836ba20 x1 : 0000000000006986 x0 : 00000000d00479de [ 1303.446221] Call trace: [ 1303.448722] cfg80211_process_disassoc+0x78/0xec [cfg80211] (P) [ 1303.454894] cfg80211_rx_mlme_mgmt+0x64/0xf8 [cfg80211] [ 1303.460362] mwifiex_process_mgmt_packet+0x1ec/0x460 [mwifiex] [ 1303.466380] mwifiex_process_sta_rx_packet+0x1bc/0x2a0 [mwifiex] [ 1303.472573] mwifiex_handle_rx_packet+0xb4/0x13c [mwifiex] [ 1303.478243] mwifiex_rx_work_queue+0x158/0x198 [mwifiex] [ 1303.483734] process_one_work+0x14c/0x28c [ 1303.487845] worker_thread+0x2cc/0x3d4 [ 1303.491680] kthread+0x12c/0x208 [ 1303.495014] ret_from_fork+0x10/0x20 Add validation in the STA receive path to verify that disassoc/deauth frames originate from the connected AP. Frames that fail this check are discarded early, preventing them from reaching the MLME layer and triggering WARN_ON(). This filtering logic is similar with that used in the ieee80211_rx_mgmt_disassoc() function in mac80211, which drops disassoc frames that don't match the current BSSID (!ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)), ensuring only relevant frames are processed. Tested on: - 8997 with FW 16.68.1.p197
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: KVM: Allow CPU to reschedule while setting per-page memory attributes When running an SEV-SNP guest with a sufficiently large amount of memory (1TB+), the host can experience CPU soft lockups when running an operation in kvm_vm_set_mem_attributes() to set memory attributes on the whole range of guest memory. watchdog: BUG: soft lockup - CPU#8 stuck for 26s! [qemu-kvm:6372] CPU: 8 UID: 0 PID: 6372 Comm: qemu-kvm Kdump: loaded Not tainted 6.15.0-rc7.20250520.el9uek.rc1.x86_64 #1 PREEMPT(voluntary) Hardware name: Oracle Corporation ORACLE SERVER E4-2c/Asm,MB Tray,2U,E4-2c, BIOS 78016600 11/13/2024 RIP: 0010:xas_create+0x78/0x1f0 Code: 00 00 00 41 80 fc 01 0f 84 82 00 00 00 ba 06 00 00 00 bd 06 00 00 00 49 8b 45 08 4d 8d 65 08 41 39 d6 73 20 83 ed 06 48 85 c0 <74> 67 48 89 c2 83 e2 03 48 83 fa 02 75 0c 48 3d 00 10 00 00 0f 87 RSP: 0018:ffffad890a34b940 EFLAGS: 00000286 RAX: ffff96f30b261daa RBX: ffffad890a34b9c8 RCX: 0000000000000000 RDX: 000000000000001e RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000018 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffad890a356868 R13: ffffad890a356860 R14: 0000000000000000 R15: ffffad890a356868 FS: 00007f5578a2a400(0000) GS:ffff97ed317e1000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f015c70fb18 CR3: 00000001109fd006 CR4: 0000000000f70ef0 PKRU: 55555554 Call Trace: <TASK> xas_store+0x58/0x630 __xa_store+0xa5/0x130 xa_store+0x2c/0x50 kvm_vm_set_mem_attributes+0x343/0x710 [kvm] kvm_vm_ioctl+0x796/0xab0 [kvm] __x64_sys_ioctl+0xa3/0xd0 do_syscall_64+0x8c/0x7a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f5578d031bb Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 2d 4c 0f 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe0a742b88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 000000004020aed2 RCX: 00007f5578d031bb RDX: 00007ffe0a742c80 RSI: 000000004020aed2 RDI: 000000000000000b RBP: 0000010000000000 R08: 0000010000000000 R09: 0000017680000000 R10: 0000000000000080 R11: 0000000000000246 R12: 00005575e5f95120 R13: 00007ffe0a742c80 R14: 0000000000000008 R15: 00005575e5f961e0 While looping through the range of memory setting the attributes, call cond_resched() to give the scheduler a chance to run a higher priority task on the runqueue if necessary and avoid staying in kernel mode long enough to trigger the lockup.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: HID: nintendo: avoid bluetooth suspend/resume stalls Ensure we don't stall or panic the kernel when using bluetooth-connected controllers. This was reported as an issue on android devices using kernel 6.6 due to the resume hook which had been added for usb joycons. First, set a new state value to JOYCON_CTLR_STATE_SUSPENDED in a newly-added nintendo_hid_suspend. This makes sure we will not stall out the kernel waiting for input reports during led classdev suspend. The stalls could happen if connectivity is unreliable or lost to the controller prior to suspend. Second, since we lose connectivity during suspend, do not try joycon_init() for bluetooth controllers in the nintendo_hid_resume path. Tested via multiple suspend/resume flows when using the controller both in USB and bluetooth modes.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: x86/sev: Use TSC_FACTOR for Secure TSC frequency calculation When using Secure TSC, the GUEST_TSC_FREQ MSR reports a frequency based on the nominal P0 frequency, which deviates slightly (typically ~0.2%) from the actual mean TSC frequency due to clocking parameters. Over extended VM uptime, this discrepancy accumulates, causing clock skew between the hypervisor and a SEV-SNP VM, leading to early timer interrupts as perceived by the guest. The guest kernel relies on the reported nominal frequency for TSC-based timekeeping, while the actual frequency set during SNP_LAUNCH_START may differ. This mismatch results in inaccurate time calculations, causing the guest to perceive hrtimers as firing earlier than expected. Utilize the TSC_FACTOR from the SEV firmware's secrets page (see "Secrets Page Format" in the SNP Firmware ABI Specification) to calculate the mean TSC frequency, ensuring accurate timekeeping and mitigating clock skew in SEV-SNP VMs. Use early_ioremap_encrypted() to map the secrets page as ioremap_encrypted() uses kmalloc() which is not available during early TSC initialization and causes a panic. [ bp: Drop the silly dummy var: https://lore.kernel.org/r/20250630192726.GBaGLlHl84xIopx4Pt@fat_crate.local ]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: reject VHT opmode for unsupported channel widths VHT operating mode notifications are not defined for channel widths below 20 MHz. In particular, 5 MHz and 10 MHz are not valid under the VHT specification and must be rejected. Without this check, malformed notifications using these widths may reach ieee80211_chan_width_to_rx_bw(), leading to a WARN_ON due to invalid input. This issue was reported by syzbot. Reject these unsupported widths early in sta_link_apply_parameters() when opmode_notif is used. The accepted set includes 20, 40, 80, 160, and 80+80 MHz, which are valid for VHT. While 320 MHz is not defined for VHT, it is allowed to avoid rejecting HE or EHT clients that may still send a VHT opmode notification.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
Claude Code is an agentic coding tool. Prior to version 1.0.4, it's possible to bypass the Claude Code confirmation prompts to read a file and then send file contents over the network without user confirmation due to an overly broad allowlist of safe commands. Reliably exploiting this requires the ability to add untrusted content into a Claude Code context window. Users on standard Claude Code auto-update received this fix automatically after release. Current users of Claude Code are unaffected, as versions prior to 1.0.24 are deprecated and have been forced to update.
CVSS Score
7.5
EPSS Score
0.001
Published
2025-08-16
A vulnerability was found in Buttercup buttercup-browser-extension up to 0.14.2. Affected by this vulnerability is an unknown functionality of the component Vault Handler. The manipulation results in improper access controls. The attack may be performed from a remote location. A high complexity level is associated with this attack. The exploitation appears to be difficult. The exploit has been made public and could be used. Upgrading to version 1.0.1 addresses this issue. The patch is identified as 89. Upgrading the affected component is recommended. This vulnerability only affects products that are no longer supported by the maintainer.
CVSS Score
3.1
EPSS Score
0.0
Published
2025-08-16


Contact Us

Shodan ® - All rights reserved