In the Linux kernel, the following vulnerability has been resolved:
ocfs2: validate l_tree_depth to avoid out-of-bounds access
The l_tree_depth field is 16-bit (__le16), but the actual maximum depth is
limited to OCFS2_MAX_PATH_DEPTH.
Add a check to prevent out-of-bounds access if l_tree_depth has an invalid
value, which may occur when reading from a corrupted mounted disk [1].
In the Linux kernel, the following vulnerability has been resolved:
vhost-scsi: Fix handling of multiple calls to vhost_scsi_set_endpoint
If vhost_scsi_set_endpoint is called multiple times without a
vhost_scsi_clear_endpoint between them, we can hit multiple bugs
found by Haoran Zhang:
1. Use-after-free when no tpgs are found:
This fixes a use after free that occurs when vhost_scsi_set_endpoint is
called more than once and calls after the first call do not find any
tpgs to add to the vs_tpg. When vhost_scsi_set_endpoint first finds
tpgs to add to the vs_tpg array match=true, so we will do:
vhost_vq_set_backend(vq, vs_tpg);
...
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If vhost_scsi_set_endpoint is called again and no tpgs are found
match=false so we skip the vhost_vq_set_backend call leaving the
pointer to the vs_tpg we then free via:
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If a scsi request is then sent we do:
vhost_scsi_handle_vq -> vhost_scsi_get_req -> vhost_vq_get_backend
which sees the vs_tpg we just did a kfree on.
2. Tpg dir removal hang:
This patch fixes an issue where we cannot remove a LIO/target layer
tpg (and structs above it like the target) dir due to the refcount
dropping to -1.
The problem is that if vhost_scsi_set_endpoint detects a tpg is already
in the vs->vs_tpg array or if the tpg has been removed so
target_depend_item fails, the undepend goto handler will do
target_undepend_item on all tpgs in the vs_tpg array dropping their
refcount to 0. At this time vs_tpg contains both the tpgs we have added
in the current vhost_scsi_set_endpoint call as well as tpgs we added in
previous calls which are also in vs->vs_tpg.
Later, when vhost_scsi_clear_endpoint runs it will do
target_undepend_item on all the tpgs in the vs->vs_tpg which will drop
their refcount to -1. Userspace will then not be able to remove the tpg
and will hang when it tries to do rmdir on the tpg dir.
3. Tpg leak:
This fixes a bug where we can leak tpgs and cause them to be
un-removable because the target name is overwritten when
vhost_scsi_set_endpoint is called multiple times but with different
target names.
The bug occurs if a user has called VHOST_SCSI_SET_ENDPOINT and setup
a vhost-scsi device to target/tpg mapping, then calls
VHOST_SCSI_SET_ENDPOINT again with a new target name that has tpgs we
haven't seen before (target1 has tpg1 but target2 has tpg2). When this
happens we don't teardown the old target tpg mapping and just overwrite
the target name and the vs->vs_tpg array. Later when we do
vhost_scsi_clear_endpoint, we are passed in either target1 or target2's
name and we will only match that target's tpgs when we loop over the
vs->vs_tpg. We will then return from the function without doing
target_undepend_item on the tpgs.
Because of all these bugs, it looks like being able to call
vhost_scsi_set_endpoint multiple times was never supported. The major
user, QEMU, already has checks to prevent this use case. So to fix the
issues, this patch prevents vhost_scsi_set_endpoint from being called
if it's already successfully added tpgs. To add, remove or change the
tpg config or target name, you must do a vhost_scsi_clear_endpoint
first.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix mlx5_poll_one() cur_qp update flow
When cur_qp isn't NULL, in order to avoid fetching the QP from
the radix tree again we check if the next cqe QP is identical to
the one we already have.
The bug however is that we are checking if the QP is identical by
checking the QP number inside the CQE against the QP number inside the
mlx5_ib_qp, but that's wrong since the QP number from the CQE is from
FW so it should be matched against mlx5_core_qp which is our FW QP
number.
Otherwise we could use the wrong QP when handling a CQE which could
cause the kernel trace below.
This issue is mainly noticeable over QPs 0 & 1, since for now they are
the only QPs in our driver whereas the QP number inside mlx5_ib_qp
doesn't match the QP number inside mlx5_core_qp.
BUG: kernel NULL pointer dereference, address: 0000000000000012
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP
CPU: 0 UID: 0 PID: 7927 Comm: kworker/u62:1 Not tainted 6.14.0-rc3+ #189
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core]
RIP: 0010:mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib]
Code: 03 00 00 8d 58 ff 21 cb 66 39 d3 74 39 48 c7 c7 3c 89 6e a0 0f b7 db e8 b7 d2 b3 e0 49 8b 86 60 03 00 00 48 c7 c7 4a 89 6e a0 <0f> b7 5c 98 02 e8 9f d2 b3 e0 41 0f b7 86 78 03 00 00 83 e8 01 21
RSP: 0018:ffff88810511bd60 EFLAGS: 00010046
RAX: 0000000000000010 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff88885fa1b3c0 RDI: ffffffffa06e894a
RBP: 00000000000000b0 R08: 0000000000000000 R09: ffff88810511bc10
R10: 0000000000000001 R11: 0000000000000001 R12: ffff88810d593000
R13: ffff88810e579108 R14: ffff888105146000 R15: 00000000000000b0
FS: 0000000000000000(0000) GS:ffff88885fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000012 CR3: 00000001077e6001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib]
__ib_process_cq+0x5a/0x150 [ib_core]
ib_cq_poll_work+0x31/0x90 [ib_core]
process_one_work+0x169/0x320
worker_thread+0x288/0x3a0
? work_busy+0xb0/0xb0
kthread+0xd7/0x1f0
? kthreads_online_cpu+0x130/0x130
? kthreads_online_cpu+0x130/0x130
ret_from_fork+0x2d/0x50
? kthreads_online_cpu+0x130/0x130
ret_from_fork_asm+0x11/0x20
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
spufs: fix a leak in spufs_create_context()
Leak fixes back in 2008 missed one case - if we are trying to set affinity
and spufs_mkdir() fails, we need to drop the reference to neighbor.
In the Linux kernel, the following vulnerability has been resolved:
spufs: fix gang directory lifetimes
prior to "[POWERPC] spufs: Fix gang destroy leaks" we used to have
a problem with gang lifetimes - creation of a gang returns opened
gang directory, which normally gets removed when that gets closed,
but if somebody has created a context belonging to that gang and
kept it alive until the gang got closed, removal failed and we
ended up with a leak.
Unfortunately, it had been fixed the wrong way. Dentry of gang
directory was no longer pinned, and rmdir on close was gone.
One problem was that failure of open kept calling simple_rmdir()
as cleanup, which meant an unbalanced dput(). Another bug was
in the success case - gang creation incremented link count on
root directory, but that was no longer undone when gang got
destroyed.
Fix consists of
* reverting the commit in question
* adding a counter to gang, protected by ->i_rwsem
of gang directory inode.
* having it set to 1 at creation time, dropped
in both spufs_dir_close() and spufs_gang_close() and bumped
in spufs_create_context(), provided that it's not 0.
* using simple_recursive_removal() to take the gang
directory out when counter reaches zero.
In the Linux kernel, the following vulnerability has been resolved:
spufs: fix a leak on spufs_new_file() failure
It's called from spufs_fill_dir(), and caller of that will do
spufs_rmdir() in case of failure. That does remove everything
we'd managed to create, but... the problem dentry is still
negative. IOW, it needs to be explicitly dropped.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix null pointer dereference in alloc_preauth_hash()
The Client send malformed smb2 negotiate request. ksmbd return error
response. Subsequently, the client can send smb2 session setup even
thought conn->preauth_info is not allocated.
This patch add KSMBD_SESS_NEED_SETUP status of connection to ignore
session setup request if smb2 negotiate phase is not complete.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate zero num_subauth before sub_auth is accessed
Access psid->sub_auth[psid->num_subauth - 1] without checking
if num_subauth is non-zero leads to an out-of-bounds read.
This patch adds a validation step to ensure num_subauth != 0
before sub_auth is accessed.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix session use-after-free in multichannel connection
There is a race condition between session setup and
ksmbd_sessions_deregister. The session can be freed before the connection
is added to channel list of session.
This patch check reference count of session before freeing it.