Vulnerabilities
Vulnerable Software
Debian:  >> Debian Linux  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: prime: fix ttm_bo_delayed_delete oops Fix an oops in ttm_bo_delayed_delete which results from dererencing a dangling pointer: Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b7b: 0000 [#1] PREEMPT SMP CPU: 4 UID: 0 PID: 1082 Comm: kworker/u65:2 Not tainted 6.14.0-rc4-00267-g505460b44513-dirty #216 Hardware name: LENOVO 82N6/LNVNB161216, BIOS GKCN65WW 01/16/2024 Workqueue: ttm ttm_bo_delayed_delete [ttm] RIP: 0010:dma_resv_iter_first_unlocked+0x55/0x290 Code: 31 f6 48 c7 c7 00 2b fa aa e8 97 bd 52 ff e8 a2 c1 53 00 5a 85 c0 74 48 e9 88 01 00 00 4c 89 63 20 4d 85 e4 0f 84 30 01 00 00 <41> 8b 44 24 10 c6 43 2c 01 48 89 df 89 43 28 e8 97 fd ff ff 4c 8b RSP: 0018:ffffbf9383473d60 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffffbf9383473d88 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffbf9383473d78 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffffa003bbf78580 R14: ffffa003a6728040 R15: 00000000000383cc FS: 0000000000000000(0000) GS:ffffa00991c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000758348024dd0 CR3: 000000012c259000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x26 ? die_addr+0x3d/0x70 ? exc_general_protection+0x159/0x460 ? asm_exc_general_protection+0x27/0x30 ? dma_resv_iter_first_unlocked+0x55/0x290 dma_resv_wait_timeout+0x56/0x100 ttm_bo_delayed_delete+0x69/0xb0 [ttm] process_one_work+0x217/0x5c0 worker_thread+0x1c8/0x3d0 ? apply_wqattrs_cleanup.part.0+0xc0/0xc0 kthread+0x10b/0x240 ? kthreads_online_cpu+0x140/0x140 ret_from_fork+0x40/0x70 ? kthreads_online_cpu+0x140/0x140 ret_from_fork_asm+0x11/0x20 </TASK> The cause of this is: - drm_prime_gem_destroy calls dma_buf_put(dma_buf) which releases the reference to the shared dma_buf. The reference count is 0, so the dma_buf is destroyed, which in turn decrements the corresponding amdgpu_bo reference count to 0, and the amdgpu_bo is destroyed - calling drm_gem_object_release then dma_resv_fini (which destroys the reservation object), then finally freeing the amdgpu_bo. - nouveau_bo obj->bo.base.resv is now a dangling pointer to the memory formerly allocated to the amdgpu_bo. - nouveau_gem_object_del calls ttm_bo_put(&nvbo->bo) which calls ttm_bo_release, which schedules ttm_bo_delayed_delete. - ttm_bo_delayed_delete runs and dereferences the dangling resv pointer, resulting in a general protection fault. Fix this by moving the drm_prime_gem_destroy call from nouveau_gem_object_del to nouveau_bo_del_ttm. This ensures that it will be run after ttm_bo_delayed_delete.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Prevent division by zero The user can set any speed value. If speed is greater than UINT_MAX/8, division by zero is possible. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Prevent division by zero The user can set any speed value. If speed is greater than UINT_MAX/8, division by zero is possible. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Prevent division by zero The user can set any speed value. If speed is greater than UINT_MAX/8, division by zero is possible. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net: tls: explicitly disallow disconnect syzbot discovered that it can disconnect a TLS socket and then run into all sort of unexpected corner cases. I have a vague recollection of Eric pointing this out to us a long time ago. Supporting disconnect is really hard, for one thing if offload is enabled we'd need to wait for all packets to be _acked_. Disconnect is not commonly used, disallow it. The immediate problem syzbot run into is the warning in the strp, but that's just the easiest bug to trigger: WARNING: CPU: 0 PID: 5834 at net/tls/tls_strp.c:486 tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486 RIP: 0010:tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486 Call Trace: <TASK> tls_rx_rec_wait+0x280/0xa60 net/tls/tls_sw.c:1363 tls_sw_recvmsg+0x85c/0x1c30 net/tls/tls_sw.c:2043 inet6_recvmsg+0x2c9/0x730 net/ipv6/af_inet6.c:678 sock_recvmsg_nosec net/socket.c:1023 [inline] sock_recvmsg+0x109/0x280 net/socket.c:1045 __sys_recvfrom+0x202/0x380 net/socket.c:2237
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: tipc: fix memory leak in tipc_link_xmit In case the backlog transmit queue for system-importance messages is overloaded, tipc_link_xmit() returns -ENOBUFS but the skb list is not purged. This leads to memory leak and failure when a skb is allocated. This commit fixes this issue by purging the skb list before tipc_link_xmit() returns.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ata: pata_pxa: Fix potential NULL pointer dereference in pxa_ata_probe() devm_ioremap() returns NULL on error. Currently, pxa_ata_probe() does not check for this case, which can result in a NULL pointer dereference. Add NULL check after devm_ioremap() to prevent this issue.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: Fix NULL pointer deference in mtk_iommu_device_group Currently, mtk_iommu calls during probe iommu_device_register before the hw_list from driver data is initialized. Since iommu probing issue fix, it leads to NULL pointer dereference in mtk_iommu_device_group when hw_list is accessed with list_first_entry (not null safe). So, change the call order to ensure iommu_device_register is called after the driver data are initialized.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net: ppp: Add bound checking for skb data on ppp_sync_txmung Ensure we have enough data in linear buffer from skb before accessing initial bytes. This prevents potential out-of-bounds accesses when processing short packets. When ppp_sync_txmung receives an incoming package with an empty payload: (remote) gef➤ p *(struct pppoe_hdr *) (skb->head + skb->network_header) $18 = { type = 0x1, ver = 0x1, code = 0x0, sid = 0x2, length = 0x0, tag = 0xffff8880371cdb96 } from the skb struct (trimmed) tail = 0x16, end = 0x140, head = 0xffff88803346f400 "4", data = 0xffff88803346f416 ":\377", truesize = 0x380, len = 0x0, data_len = 0x0, mac_len = 0xe, hdr_len = 0x0, it is not safe to access data[2]. [pabeni@redhat.com: fixed subj typo]
CVSS Score
7.1
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net_sched: sch_sfq: move the limit validation It is not sufficient to directly validate the limit on the data that the user passes as it can be updated based on how the other parameters are changed. Move the check at the end of the configuration update process to also catch scenarios where the limit is indirectly updated, for example with the following configurations: tc qdisc add dev dummy0 handle 1: root sfq limit 2 flows 1 depth 1 tc qdisc add dev dummy0 handle 1: root sfq limit 2 flows 1 divisor 1 This fixes the following syzkaller reported crash: ------------[ cut here ]------------ UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:203:6 index 65535 is out of range for type 'struct sfq_head[128]' CPU: 1 UID: 0 PID: 3037 Comm: syz.2.16 Not tainted 6.14.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 12/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x201/0x300 lib/dump_stack.c:120 ubsan_epilogue lib/ubsan.c:231 [inline] __ubsan_handle_out_of_bounds+0xf5/0x120 lib/ubsan.c:429 sfq_link net/sched/sch_sfq.c:203 [inline] sfq_dec+0x53c/0x610 net/sched/sch_sfq.c:231 sfq_dequeue+0x34e/0x8c0 net/sched/sch_sfq.c:493 sfq_reset+0x17/0x60 net/sched/sch_sfq.c:518 qdisc_reset+0x12e/0x600 net/sched/sch_generic.c:1035 tbf_reset+0x41/0x110 net/sched/sch_tbf.c:339 qdisc_reset+0x12e/0x600 net/sched/sch_generic.c:1035 dev_reset_queue+0x100/0x1b0 net/sched/sch_generic.c:1311 netdev_for_each_tx_queue include/linux/netdevice.h:2590 [inline] dev_deactivate_many+0x7e5/0xe70 net/sched/sch_generic.c:1375
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01


Contact Us

Shodan ® - All rights reserved