In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not clear page dirty inside extent_write_locked_range()
[BUG]
For subpage + zoned case, the following workload can lead to rsv data
leak at unmount time:
# mkfs.btrfs -f -s 4k $dev
# mount $dev $mnt
# fsstress -w -n 8 -d $mnt -s 1709539240
0/0: fiemap - no filename
0/1: copyrange read - no filename
0/2: write - no filename
0/3: rename - no source filename
0/4: creat f0 x:0 0 0
0/4: creat add id=0,parent=-1
0/5: writev f0[259 1 0 0 0 0] [778052,113,965] 0
0/6: ioctl(FIEMAP) f0[259 1 0 0 224 887097] [1294220,2291618343991484791,0x10000] -1
0/7: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 224 887097] return 25, fallback to stat()
0/7: dwrite f0[259 1 0 0 224 887097] [696320,102400] 0
# umount $mnt
The dmesg includes the following rsv leak detection warning (all call
trace skipped):
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8653 btrfs_destroy_inode+0x1e0/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8654 btrfs_destroy_inode+0x1a8/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8660 btrfs_destroy_inode+0x1a0/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): last unmount of filesystem 1b4abba9-de34-4f07-9e7f-157cf12a18d6
------------[ cut here ]------------
WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): space_info DATA has 268218368 free, is not full
BTRFS info (device sda): space_info total=268435456, used=204800, pinned=0, reserved=0, may_use=12288, readonly=0 zone_unusable=0
BTRFS info (device sda): global_block_rsv: size 0 reserved 0
BTRFS info (device sda): trans_block_rsv: size 0 reserved 0
BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0
------------[ cut here ]------------
WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): space_info METADATA has 267796480 free, is not full
BTRFS info (device sda): space_info total=268435456, used=131072, pinned=0, reserved=0, may_use=262144, readonly=0 zone_unusable=245760
BTRFS info (device sda): global_block_rsv: size 0 reserved 0
BTRFS info (device sda): trans_block_rsv: size 0 reserved 0
BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0
Above $dev is a tcmu-runner emulated zoned HDD, which has a max zone
append size of 64K, and the system has 64K page size.
[CAUSE]
I have added several trace_printk() to show the events (header skipped):
> btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688
> btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288
> btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536
> btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864
The above lines show our buffered write has dirtied 3 pages of inode
259 of root 5:
704K 768K 832K 896K
I |////I/////////////////I///////////| I
756K 868K
|///| is the dirtied range using subpage bitmaps. and 'I' is the page
boundary.
Meanwhile all three pages (704K, 768K, 832K) have their PageDirty
flag set.
> btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400
Then direct IO writ
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
parisc: fix a possible DMA corruption
ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be
possible that two unrelated 16-byte allocations share a cache line. If
one of these allocations is written using DMA and the other is written
using cached write, the value that was written with DMA may be
corrupted.
This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 -
that's the largest possible cache line size.
As different parisc microarchitectures have different cache line size, we
define arch_slab_minalign(), cache_line_size() and
dma_get_cache_alignment() so that the kernel may tune slab cache
parameters dynamically, based on the detected cache line size.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: line6: Fix racy access to midibuf
There can be concurrent accesses to line6 midibuf from both the URB
completion callback and the rawmidi API access. This could be a cause
of KMSAN warning triggered by syzkaller below (so put as reported-by
here).
This patch protects the midibuf call of the former code path with a
spinlock for avoiding the possible races.
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/preempt_fence: enlarge the fence critical section
It is really easy to introduce subtle deadlocks in
preempt_fence_work_func() since we operate on single global ordered-wq
for signalling our preempt fences behind the scenes, so even though we
signal a particular fence, everything in the callback should be in the
fence critical section, since blocking in the callback will prevent
other published fences from signalling. If we enlarge the fence critical
section to cover the entire callback, then lockdep should be able to
understand this better, and complain if we grab a sensitive lock like
vm->lock, which is also held when waiting on preempt fences.
In the Linux kernel, the following vulnerability has been resolved:
xen: privcmd: Switch from mutex to spinlock for irqfds
irqfd_wakeup() gets EPOLLHUP, when it is called by
eventfd_release() by way of wake_up_poll(&ctx->wqh, EPOLLHUP), which
gets called under spin_lock_irqsave(). We can't use a mutex here as it
will lead to a deadlock.
Fix it by switching over to a spin lock.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: core: Check for unset descriptor
Make sure the descriptor has been set before looking at maxpacket.
This fixes a null pointer panic in this case.
This may happen if the gadget doesn't properly set up the endpoint
for the current speed, or the gadget descriptors are malformed and
the descriptor for the speed/endpoint are not found.
No current gadget driver is known to have this problem, but this
may cause a hard-to-find bug during development of new gadgets.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Forward soft recovery errors to userspace
As we discussed before[1], soft recovery should be
forwarded to userspace, or we can get into a really
bad state where apps will keep submitting hanging
command buffers cascading us to a hard reset.
1: https://lore.kernel.org/all/bf23d5ed-9a6b-43e7-84ee-8cbfd0d60f18@froggi.es/
(cherry picked from commit 434967aadbbbe3ad9103cc29e9a327de20fdba01)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btnxpuart: Shutdown timer and prevent rearming when driver unloading
When unload the btnxpuart driver, its associated timer will be deleted.
If the timer happens to be modified at this moment, it leads to the
kernel call this timer even after the driver unloaded, resulting in
kernel panic.
Use timer_shutdown_sync() instead of del_timer_sync() to prevent rearming.
panic log:
Internal error: Oops: 0000000086000007 [#1] PREEMPT SMP
Modules linked in: algif_hash algif_skcipher af_alg moal(O) mlan(O) crct10dif_ce polyval_ce polyval_generic snd_soc_imx_card snd_soc_fsl_asoc_card snd_soc_imx_audmux mxc_jpeg_encdec v4l2_jpeg snd_soc_wm8962 snd_soc_fsl_micfil snd_soc_fsl_sai flexcan snd_soc_fsl_utils ap130x rpmsg_ctrl imx_pcm_dma can_dev rpmsg_char pwm_fan fuse [last unloaded: btnxpuart]
CPU: 5 PID: 723 Comm: memtester Tainted: G O 6.6.23-lts-next-06207-g4aef2658ac28 #1
Hardware name: NXP i.MX95 19X19 board (DT)
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : 0xffff80007a2cf464
lr : call_timer_fn.isra.0+0x24/0x80
...
Call trace:
0xffff80007a2cf464
__run_timers+0x234/0x280
run_timer_softirq+0x20/0x40
__do_softirq+0x100/0x26c
____do_softirq+0x10/0x1c
call_on_irq_stack+0x24/0x4c
do_softirq_own_stack+0x1c/0x2c
irq_exit_rcu+0xc0/0xdc
el0_interrupt+0x54/0xd8
__el0_irq_handler_common+0x18/0x24
el0t_64_irq_handler+0x10/0x1c
el0t_64_irq+0x190/0x194
Code: ???????? ???????? ???????? ???????? (????????)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception in interrupt
SMP: stopping secondary CPUs
Kernel Offset: disabled
CPU features: 0x0,c0000000,40028143,1000721b
Memory Limit: none
---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]---
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not BUG_ON() when freeing tree block after error
When freeing a tree block, at btrfs_free_tree_block(), if we fail to
create a delayed reference we don't deal with the error and just do a
BUG_ON(). The error most likely to happen is -ENOMEM, and we have a
comment mentioning that only -ENOMEM can happen, but that is not true,
because in case qgroups are enabled any error returned from
btrfs_qgroup_trace_extent_post() (can be -EUCLEAN or anything returned
from btrfs_search_slot() for example) can be propagated back to
btrfs_free_tree_block().
So stop doing a BUG_ON() and return the error to the callers and make
them abort the transaction to prevent leaking space. Syzbot was
triggering this, likely due to memory allocation failure injection.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix null ptr deref in dtInsertEntry
[syzbot reported]
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 5061 Comm: syz-executor404 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:dtInsertEntry+0xd0c/0x1780 fs/jfs/jfs_dtree.c:3713
...
[Analyze]
In dtInsertEntry(), when the pointer h has the same value as p, after writing
name in UniStrncpy_to_le(), p->header.flag will be cleared. This will cause the
previously true judgment "p->header.flag & BT-LEAF" to change to no after writing
the name operation, this leads to entering an incorrect branch and accessing the
uninitialized object ih when judging this condition for the second time.
[Fix]
After got the page, check freelist first, if freelist == 0 then exit dtInsert()
and return -EINVAL.