In the Linux kernel, the following vulnerability has been resolved:
net: tls: explicitly disallow disconnect
syzbot discovered that it can disconnect a TLS socket and then
run into all sort of unexpected corner cases. I have a vague
recollection of Eric pointing this out to us a long time ago.
Supporting disconnect is really hard, for one thing if offload
is enabled we'd need to wait for all packets to be _acked_.
Disconnect is not commonly used, disallow it.
The immediate problem syzbot run into is the warning in the strp,
but that's just the easiest bug to trigger:
WARNING: CPU: 0 PID: 5834 at net/tls/tls_strp.c:486 tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486
RIP: 0010:tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486
Call Trace:
<TASK>
tls_rx_rec_wait+0x280/0xa60 net/tls/tls_sw.c:1363
tls_sw_recvmsg+0x85c/0x1c30 net/tls/tls_sw.c:2043
inet6_recvmsg+0x2c9/0x730 net/ipv6/af_inet6.c:678
sock_recvmsg_nosec net/socket.c:1023 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1045
__sys_recvfrom+0x202/0x380 net/socket.c:2237
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix memory leak in tipc_link_xmit
In case the backlog transmit queue for system-importance messages is overloaded,
tipc_link_xmit() returns -ENOBUFS but the skb list is not purged. This leads to
memory leak and failure when a skb is allocated.
This commit fixes this issue by purging the skb list before tipc_link_xmit()
returns.
In the Linux kernel, the following vulnerability has been resolved:
ata: pata_pxa: Fix potential NULL pointer dereference in pxa_ata_probe()
devm_ioremap() returns NULL on error. Currently, pxa_ata_probe() does
not check for this case, which can result in a NULL pointer dereference.
Add NULL check after devm_ioremap() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix NULL pointer deference in mtk_iommu_device_group
Currently, mtk_iommu calls during probe iommu_device_register before
the hw_list from driver data is initialized. Since iommu probing issue
fix, it leads to NULL pointer dereference in mtk_iommu_device_group when
hw_list is accessed with list_first_entry (not null safe).
So, change the call order to ensure iommu_device_register is called
after the driver data are initialized.
In the Linux kernel, the following vulnerability has been resolved:
net: ppp: Add bound checking for skb data on ppp_sync_txmung
Ensure we have enough data in linear buffer from skb before accessing
initial bytes. This prevents potential out-of-bounds accesses
when processing short packets.
When ppp_sync_txmung receives an incoming package with an empty
payload:
(remote) gef⤠p *(struct pppoe_hdr *) (skb->head + skb->network_header)
$18 = {
type = 0x1,
ver = 0x1,
code = 0x0,
sid = 0x2,
length = 0x0,
tag = 0xffff8880371cdb96
}
from the skb struct (trimmed)
tail = 0x16,
end = 0x140,
head = 0xffff88803346f400 "4",
data = 0xffff88803346f416 ":\377",
truesize = 0x380,
len = 0x0,
data_len = 0x0,
mac_len = 0xe,
hdr_len = 0x0,
it is not safe to access data[2].
[pabeni@redhat.com: fixed subj typo]
In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: move the limit validation
It is not sufficient to directly validate the limit on the data that
the user passes as it can be updated based on how the other parameters
are changed.
Move the check at the end of the configuration update process to also
catch scenarios where the limit is indirectly updated, for example
with the following configurations:
tc qdisc add dev dummy0 handle 1: root sfq limit 2 flows 1 depth 1
tc qdisc add dev dummy0 handle 1: root sfq limit 2 flows 1 divisor 1
This fixes the following syzkaller reported crash:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:203:6
index 65535 is out of range for type 'struct sfq_head[128]'
CPU: 1 UID: 0 PID: 3037 Comm: syz.2.16 Not tainted 6.14.0-rc2-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 12/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x201/0x300 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_out_of_bounds+0xf5/0x120 lib/ubsan.c:429
sfq_link net/sched/sch_sfq.c:203 [inline]
sfq_dec+0x53c/0x610 net/sched/sch_sfq.c:231
sfq_dequeue+0x34e/0x8c0 net/sched/sch_sfq.c:493
sfq_reset+0x17/0x60 net/sched/sch_sfq.c:518
qdisc_reset+0x12e/0x600 net/sched/sch_generic.c:1035
tbf_reset+0x41/0x110 net/sched/sch_tbf.c:339
qdisc_reset+0x12e/0x600 net/sched/sch_generic.c:1035
dev_reset_queue+0x100/0x1b0 net/sched/sch_generic.c:1311
netdev_for_each_tx_queue include/linux/netdevice.h:2590 [inline]
dev_deactivate_many+0x7e5/0xe70 net/sched/sch_generic.c:1375
In the Linux kernel, the following vulnerability has been resolved:
PCI: vmd: Make vmd_dev::cfg_lock a raw_spinlock_t type
The access to the PCI config space via pci_ops::read and pci_ops::write is
a low-level hardware access. The functions can be accessed with disabled
interrupts even on PREEMPT_RT. The pci_lock is a raw_spinlock_t for this
purpose.
A spinlock_t becomes a sleeping lock on PREEMPT_RT, so it cannot be
acquired with disabled interrupts. The vmd_dev::cfg_lock is accessed in
the same context as the pci_lock.
Make vmd_dev::cfg_lock a raw_spinlock_t type so it can be used with
interrupts disabled.
This was reported as:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
Call Trace:
rt_spin_lock+0x4e/0x130
vmd_pci_read+0x8d/0x100 [vmd]
pci_user_read_config_byte+0x6f/0xe0
pci_read_config+0xfe/0x290
sysfs_kf_bin_read+0x68/0x90
[bigeasy: reword commit message]
Tested-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
[kwilczynski: commit log]
[bhelgaas: add back report info from
https://lore.kernel.org/lkml/20241218115951.83062-1-ryotkkr98@gmail.com/]
In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-bounds access in f2fs_truncate_inode_blocks()
syzbot reports an UBSAN issue as below:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in fs/f2fs/node.h:381:10
index 18446744073709550692 is out of range for type '__le32[5]' (aka 'unsigned int[5]')
CPU: 0 UID: 0 PID: 5318 Comm: syz.0.0 Not tainted 6.14.0-rc3-syzkaller-00060-g6537cfb395f3 #0
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_out_of_bounds+0x121/0x150 lib/ubsan.c:429
get_nid fs/f2fs/node.h:381 [inline]
f2fs_truncate_inode_blocks+0xa5e/0xf60 fs/f2fs/node.c:1181
f2fs_do_truncate_blocks+0x782/0x1030 fs/f2fs/file.c:808
f2fs_truncate_blocks+0x10d/0x300 fs/f2fs/file.c:836
f2fs_truncate+0x417/0x720 fs/f2fs/file.c:886
f2fs_file_write_iter+0x1bdb/0x2550 fs/f2fs/file.c:5093
aio_write+0x56b/0x7c0 fs/aio.c:1633
io_submit_one+0x8a7/0x18a0 fs/aio.c:2052
__do_sys_io_submit fs/aio.c:2111 [inline]
__se_sys_io_submit+0x171/0x2e0 fs/aio.c:2081
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f238798cde9
index 18446744073709550692 (decimal, unsigned long long)
= 0xfffffffffffffc64 (hexadecimal, unsigned long long)
= -924 (decimal, long long)
In f2fs_truncate_inode_blocks(), UBSAN detects that get_nid() tries to
access .i_nid[-924], it means both offset[0] and level should zero.
The possible case should be in f2fs_do_truncate_blocks(), we try to
truncate inode size to zero, however, dn.ofs_in_node is zero and
dn.node_page is not an inode page, so it fails to truncate inode page,
and then pass zeroed free_from to f2fs_truncate_inode_blocks(), result
in this issue.
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
I guess the reason why dn.node_page is not an inode page could be: there
are multiple nat entries share the same node block address, once the node
block address was reused, f2fs_get_node_page() may load a non-inode block.
Let's add a sanity check for such condition to avoid out-of-bounds access
issue.