In the Linux kernel, the following vulnerability has been resolved:
btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount
During the unmount path, at close_ctree(), we first stop the cleaner
kthread, using kthread_stop() which frees the associated task_struct, and
then stop and destroy all the work queues. However after we stopped the
cleaner we may still have a worker from the delalloc_workers queue running
inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(),
which in turn tries to wake up the cleaner kthread - which was already
destroyed before, resulting in a use-after-free on the task_struct.
Syzbot reported this with the following stack traces:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-delalloc btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
__lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205
submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615
run_ordered_work fs/btrfs/async-thread.c:288 [inline]
btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:250 [inline]
slab_post_alloc_hook mm/slub.c:4104 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1113
copy_process+0x5d1/0x3d50 kernel/fork.c:2225
kernel_clone+0x223/0x870 kernel/fork.c:2807
kernel_thread+0x1bc/0x240 kernel/fork.c:2869
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:767
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 24:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kmem_cache_free+0x195/0x410 mm/slub.c:4700
put_task_struct include/linux/sched/task.h:144 [inline]
delayed_put_task_struct+0x125/0x300 kernel/exit.c:227
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554
run_ksoftirqd+0xca/0x130 kernel/softirq.c:943
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: clear link ID from bitmap during link delete after clean up
Currently, during link deletion, the link ID is first removed from the
valid_links bitmap before performing any clean-up operations. However, some
functions require the link ID to remain in the valid_links bitmap. One
such example is cfg80211_cac_event(). The flow is -
nl80211_remove_link()
cfg80211_remove_link()
ieee80211_del_intf_link()
ieee80211_vif_set_links()
ieee80211_vif_update_links()
ieee80211_link_stop()
cfg80211_cac_event()
cfg80211_cac_event() requires link ID to be present but it is cleared
already in cfg80211_remove_link(). Ultimately, WARN_ON() is hit.
Therefore, clear the link ID from the bitmap only after completing the link
clean-up.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix mbss changed flags corruption on 32 bit systems
On 32-bit systems, the size of an unsigned long is 4 bytes,
while a u64 is 8 bytes. Therefore, when using
or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE),
the code is incorrectly searching for a bit in a 32-bit
variable that is expected to be 64 bits in size,
leading to incorrect bit finding.
Solution: Ensure that the size of the bits variable is correctly
adjusted for each architecture.
Call Trace:
? show_regs+0x54/0x58
? __warn+0x6b/0xd4
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? report_bug+0x113/0x150
? exc_overflow+0x30/0x30
? handle_bug+0x27/0x44
? exc_invalid_op+0x18/0x50
? handle_exception+0xf6/0xf6
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? ieee80211_mesh_work+0xff/0x260 [mac80211]
? cfg80211_wiphy_work+0x72/0x98 [cfg80211]
? process_one_work+0xf1/0x1fc
? worker_thread+0x2c0/0x3b4
? kthread+0xc7/0xf0
? mod_delayed_work_on+0x4c/0x4c
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork+0x24/0x38
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork_asm+0xf/0x14
? entry_INT80_32+0xf0/0xf0
[restore no-op path for no changes]
In the Linux kernel, the following vulnerability has been resolved:
ALSA: seq: oss: Fix races at processing SysEx messages
OSS sequencer handles the SysEx messages split in 6 bytes packets, and
ALSA sequencer OSS layer tries to combine those. It stores the data
in the internal buffer and this access is racy as of now, which may
lead to the out-of-bounds access.
As a temporary band-aid fix, introduce a mutex for serializing the
process of the SysEx message packets.
In the Linux kernel, the following vulnerability has been resolved:
virtio-net: fix overflow inside virtnet_rq_alloc
When the frag just got a page, then may lead to regression on VM.
Specially if the sysctl net.core.high_order_alloc_disable value is 1,
then the frag always get a page when do refill.
Which could see reliable crashes or scp failure (scp a file 100M in size
to VM).
The issue is that the virtnet_rq_dma takes up 16 bytes at the beginning
of a new frag. When the frag size is larger than PAGE_SIZE,
everything is fine. However, if the frag is only one page and the
total size of the buffer and virtnet_rq_dma is larger than one page, an
overflow may occur.
The commit f9dac92ba908 ("virtio_ring: enable premapped mode whatever
use_dma_api") introduced this problem. And we reverted some commits to
fix this in last linux version. Now we try to enable it and fix this
bug directly.
Here, when the frag size is not enough, we reduce the buffer len to fix
this problem.
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone.
In the Linux kernel, the following vulnerability has been resolved:
jffs2: Prevent rtime decompress memory corruption
The rtime decompression routine does not fully check bounds during the
entirety of the decompression pass and can corrupt memory outside the
decompression buffer if the compressed data is corrupted. This adds the
required check to prevent this failure mode.
In the Linux kernel, the following vulnerability has been resolved:
block: RCU protect disk->conv_zones_bitmap
Ensure that a disk revalidation changing the conventional zones bitmap
of a disk does not cause invalid memory references when using the
disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap
pointer.
disk_zone_is_conv() is modified to operate under the RCU read lock and
the function disk_set_conv_zones_bitmap() is added to update a disk
conv_zones_bitmap pointer using rcu_replace_pointer() with the disk
zone_wplugs_lock spinlock held.
disk_free_zone_resources() is modified to call
disk_update_zone_resources() with a NULL bitmap pointer to free the disk
conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in
disk_update_zone_resources() to set the new (revalidated) bitmap and
free the old one.
In the Linux kernel, the following vulnerability has been resolved:
PCI: imx6: Fix suspend/resume support on i.MX6QDL
The suspend/resume functionality is currently broken on the i.MX6QDL
platform, as documented in the NXP errata (ERR005723):
https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
This patch addresses the issue by sharing most of the suspend/resume
sequences used by other i.MX devices, while avoiding modifications to
critical registers that disrupt the PCIe functionality. It targets the
same problem as the following downstream commit:
https://github.com/nxp-imx/linux-imx/commit/4e92355e1f79d225ea842511fcfd42b343b32995
Unlike the downstream commit, this patch also resets the connected PCIe
device if possible. Without this reset, certain drivers, such as ath10k
or iwlwifi, will crash on resume. The device reset is also done by the
driver on other i.MX platforms, making this patch consistent with
existing practices.
Upon resuming, the kernel will hang and display an error. Here's an
example of the error encountered with the ath10k driver:
ath10k_pci 0000:01:00.0: Unable to change power state from D3hot to D0, device inaccessible
Unhandled fault: imprecise external abort (0x1406) at 0x0106f944
Without this patch, suspend/resume will fail on i.MX6QDL devices if a
PCIe device is connected.
[kwilczynski: commit log, added tag for stable releases]
In the Linux kernel, the following vulnerability has been resolved:
s390/entry: Mark IRQ entries to fix stack depot warnings
The stack depot filters out everything outside of the top interrupt
context as an uninteresting or irrelevant part of the stack traces. This
helps with stack trace de-duplication, avoiding an explosion of saved
stack traces that share the same IRQ context code path but originate
from different randomly interrupted points, eventually exhausting the
stack depot.
Filtering uses in_irqentry_text() to identify functions within the
.irqentry.text and .softirqentry.text sections, which then become the
last stack trace entries being saved.
While __do_softirq() is placed into the .softirqentry.text section by
common code, populating .irqentry.text is architecture-specific.
Currently, the .irqentry.text section on s390 is empty, which prevents
stack depot filtering and de-duplication and could result in warnings
like:
Stack depot reached limit capacity
WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8
with PREEMPT and KASAN enabled.
Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into
the .irqentry.text section and updating the kprobes blacklist to include
the .irqentry.text section.
This is done only for asynchronous interrupts and explicitly not for
program checks, which are synchronous and where the context beyond the
program check is important to preserve. Despite machine checks being
somewhat in between, they are extremely rare, and preserving context
when possible is also of value.
SVCs and Restart Interrupts are not relevant, one being always at the
boundary to user space and the other being a one-time thing.
IRQ entries filtering is also optionally used in ftrace function graph,
where the same logic applies.