In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue.
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a null-ptr-deref in tipc_topsrv_accept
syzbot found a crash in tipc_topsrv_accept:
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
Workqueue: tipc_rcv tipc_topsrv_accept
RIP: 0010:kernel_accept+0x22d/0x350 net/socket.c:3487
Call Trace:
<TASK>
tipc_topsrv_accept+0x197/0x280 net/tipc/topsrv.c:460
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
It was caused by srv->listener that might be set to null by
tipc_topsrv_stop() in net .exit whereas it's still used in
tipc_topsrv_accept() worker.
srv->listener is protected by srv->idr_lock in tipc_topsrv_stop(), so add
a check for srv->listener under srv->idr_lock in tipc_topsrv_accept() to
avoid the null-ptr-deref. To ensure the lsock is not released during the
tipc_topsrv_accept(), move sock_release() after tipc_topsrv_work_stop()
where it's waiting until the tipc_topsrv_accept worker to be done.
Note that sk_callback_lock is used to protect sk->sk_user_data instead of
srv->listener, and it should check srv in tipc_topsrv_listener_data_ready()
instead. This also ensures that no more tipc_topsrv_accept worker will be
started after tipc_conn_close() is called in tipc_topsrv_stop() where it
sets sk->sk_user_data to null.
In the Linux kernel, the following vulnerability has been resolved:
tracing/hist: Fix out-of-bound write on 'action_data.var_ref_idx'
When generate a synthetic event with many params and then create a trace
action for it [1], kernel panic happened [2].
It is because that in trace_action_create() 'data->n_params' is up to
SYNTH_FIELDS_MAX (current value is 64), and array 'data->var_ref_idx'
keeps indices into array 'hist_data->var_refs' for each synthetic event
param, but the length of 'data->var_ref_idx' is TRACING_MAP_VARS_MAX
(current value is 16), so out-of-bound write happened when 'data->n_params'
more than 16. In this case, 'data->match_data.event' is overwritten and
eventually cause the panic.
To solve the issue, adjust the length of 'data->var_ref_idx' to be
SYNTH_FIELDS_MAX and add sanity checks to avoid out-of-bound write.
[1]
# cd /sys/kernel/tracing/
# echo "my_synth_event int v1; int v2; int v3; int v4; int v5; int v6;\
int v7; int v8; int v9; int v10; int v11; int v12; int v13; int v14;\
int v15; int v16; int v17; int v18; int v19; int v20; int v21; int v22;\
int v23; int v24; int v25; int v26; int v27; int v28; int v29; int v30;\
int v31; int v32; int v33; int v34; int v35; int v36; int v37; int v38;\
int v39; int v40; int v41; int v42; int v43; int v44; int v45; int v46;\
int v47; int v48; int v49; int v50; int v51; int v52; int v53; int v54;\
int v55; int v56; int v57; int v58; int v59; int v60; int v61; int v62;\
int v63" >> synthetic_events
# echo 'hist:keys=pid:ts0=common_timestamp.usecs if comm=="bash"' >> \
events/sched/sched_waking/trigger
# echo "hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid)" >> events/sched/sched_switch/trigger
[2]
BUG: unable to handle page fault for address: ffff91c900000000
PGD 61001067 P4D 61001067 PUD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 2 PID: 322 Comm: bash Tainted: G W 6.1.0-rc8+ #229
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:strcmp+0xc/0x30
Code: 75 f7 31 d2 44 0f b6 04 16 44 88 04 11 48 83 c2 01 45 84 c0 75 ee
c3 cc cc cc cc 0f 1f 00 31 c0 eb 08 48 83 c0 01 84 d2 74 13 <0f> b6 14
07 3a 14 06 74 ef 19 c0 83 c8 01 c3 cc cc cc cc 31 c3
RSP: 0018:ffff9b3b00f53c48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffffffffba958a68 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffff91c943d33a90 RDI: ffff91c900000000
RBP: ffff91c900000000 R08: 00000018d604b529 R09: 0000000000000000
R10: ffff91c9483eddb1 R11: ffff91ca483eddab R12: ffff91c946171580
R13: ffff91c9479f0538 R14: ffff91c9457c2848 R15: ffff91c9479f0538
FS: 00007f1d1cfbe740(0000) GS:ffff91c9bdc80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff91c900000000 CR3: 0000000006316000 CR4: 00000000000006e0
Call Trace:
<TASK>
__find_event_file+0x55/0x90
action_create+0x76c/0x1060
event_hist_trigger_parse+0x146d/0x2060
? event_trigger_write+0x31/0xd0
trigger_process_regex+0xbb/0x110
event_trigger_write+0x6b/0xd0
vfs_write+0xc8/0x3e0
? alloc_fd+0xc0/0x160
? preempt_count_add+0x4d/0xa0
? preempt_count_add+0x70/0xa0
ksys_write+0x5f/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1d1d0cf077
Code: 64 89 02 48 c7 c0 ff ff ff ff eb bb 0f 1f 80 00 00 00 00 f3 0f 1e
fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00
f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74
RSP: 002b:00007ffcebb0e568 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000143 RCX: 00007f1d1d0cf077
RDX: 0000000000000143 RSI: 00005639265aa7e0 RDI: 0000000000000001
RBP: 00005639265aa7e0 R08: 000000000000000a R09: 0000000000000142
R
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: use quiesced elevator switch when reinitializing queues
The hctx's run_work may be racing with the elevator switch when
reinitializing hardware queues. The queue is merely frozen in this
context, but that only prevents requests from allocating and doesn't
stop the hctx work from running. The work may get an elevator pointer
that's being torn down, and can result in use-after-free errors and
kernel panics (example below). Use the quiesced elevator switch instead,
and make the previous one static since it is now only used locally.
nvme nvme0: resetting controller
nvme nvme0: 32/0/0 default/read/poll queues
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0
Oops: 0000 [#1] SMP PTI
Workqueue: kblockd blk_mq_run_work_fn
RIP: 0010:kyber_has_work+0x29/0x70
...
Call Trace:
__blk_mq_do_dispatch_sched+0x83/0x2b0
__blk_mq_sched_dispatch_requests+0x12e/0x170
blk_mq_sched_dispatch_requests+0x30/0x60
__blk_mq_run_hw_queue+0x2b/0x50
process_one_work+0x1ef/0x380
worker_thread+0x2d/0x3e0
In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's.
In the Linux kernel, the following vulnerability has been resolved:
media: solo6x10: fix possible memory leak in solo_sysfs_init()
If device_register() returns error in solo_sysfs_init(), the
name allocated by dev_set_name() need be freed. As comment of
device_register() says, it should use put_device() to give up
the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
vme: Fix error not catched in fake_init()
In fake_init(), __root_device_register() is possible to fail but it's
ignored, which can cause unregistering vme_root fail when exit.
general protection fault,
probably for non-canonical address 0xdffffc000000008c
KASAN: null-ptr-deref in range [0x0000000000000460-0x0000000000000467]
RIP: 0010:root_device_unregister+0x26/0x60
Call Trace:
<TASK>
__x64_sys_delete_module+0x34f/0x540
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Return error when __root_device_register() fails.
In the Linux kernel, the following vulnerability has been resolved:
ARM: OMAP2+: omap4-common: Fix refcount leak bug
In omap4_sram_init(), of_find_compatible_node() will return a node
pointer with refcount incremented. We should use of_node_put() when
it is not used anymore.