In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix locking in pdc_iodc_print() firmware call
Utilize pdc_lock spinlock to protect parallel modifications of the
iodc_dbuf[] buffer, check length to prevent buffer overflow of
iodc_dbuf[], drop the iodc_retbuf[] buffer and fix some wrong
indentings.
In the Linux kernel, the following vulnerability has been resolved:
lib/fonts: fix undefined behavior in bit shift for get_default_font
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in lib/fonts/fonts.c:139:20
left shift of 1 by 31 places cannot be represented in type 'int'
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
get_default_font+0x1c7/0x1f0
fbcon_startup+0x347/0x3a0
do_take_over_console+0xce/0x270
do_fbcon_takeover+0xa1/0x170
do_fb_registered+0x2a8/0x340
fbcon_fb_registered+0x47/0xe0
register_framebuffer+0x294/0x4a0
__drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper]
drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper]
drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper]
drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper]
bochs_pci_probe+0x6ca/0x772 [bochs]
local_pci_probe+0x4d/0xb0
pci_device_probe+0x119/0x320
really_probe+0x181/0x550
__driver_probe_device+0xc6/0x220
driver_probe_device+0x32/0x100
__driver_attach+0x195/0x200
bus_for_each_dev+0xbb/0x120
driver_attach+0x27/0x30
bus_add_driver+0x22e/0x2f0
driver_register+0xa9/0x190
__pci_register_driver+0x90/0xa0
bochs_pci_driver_init+0x52/0x1000 [bochs]
do_one_initcall+0x76/0x430
do_init_module+0x61/0x28a
load_module+0x1f82/0x2e50
__do_sys_finit_module+0xf8/0x190
__x64_sys_finit_module+0x23/0x30
do_syscall_64+0x58/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix deletion race condition
System crash when using debug kernel due to link list corruption. The cause
of the link list corruption is due to session deletion was allowed to queue
up twice. Here's the internal trace that show the same port was allowed to
double queue for deletion on different cpu.
20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1
20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1
Move the clearing/setting of deleted flag lock.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount
syzbot found an invalid-free in diUnmount:
BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline]
BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674
Free of addr ffff88806f410000 by task syz-executor131/3632
CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460
____kasan_slab_free+0xfb/0x120
kasan_slab_free include/linux/kasan.h:177 [inline]
slab_free_hook mm/slub.c:1724 [inline]
slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750
slab_free mm/slub.c:3661 [inline]
__kmem_cache_free+0x71/0x110 mm/slub.c:3674
diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195
jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63
jfs_put_super+0x86/0x190 fs/jfs/super.c:194
generic_shutdown_super+0x130/0x310 fs/super.c:492
kill_block_super+0x79/0xd0 fs/super.c:1428
deactivate_locked_super+0xa7/0xf0 fs/super.c:332
cleanup_mnt+0x494/0x520 fs/namespace.c:1186
task_work_run+0x243/0x300 kernel/task_work.c:179
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x664/0x2070 kernel/exit.c:820
do_group_exit+0x1fd/0x2b0 kernel/exit.c:950
__do_sys_exit_group kernel/exit.c:961 [inline]
__se_sys_exit_group kernel/exit.c:959 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount.
If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount().
JFS_IP(ipimap)->i_imap will be freed once again.
Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
In the Linux kernel, the following vulnerability has been resolved:
dm integrity: call kmem_cache_destroy() in dm_integrity_init() error path
Otherwise the journal_io_cache will leak if dm_register_target() fails.
In the Linux kernel, the following vulnerability has been resolved:
drm: amd: display: Fix memory leakage
This commit fixes memory leakage in dc_construct_ctx() function.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
The finalization of nilfs_segctor_thread() can race with
nilfs_segctor_kill_thread() which terminates that thread, potentially
causing a use-after-free BUG as KASAN detected.
At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member
of "struct nilfs_sc_info" to indicate the thread has finished, and then
notifies nilfs_segctor_kill_thread() of this using waitqueue
"sc_wait_task" on the struct nilfs_sc_info.
However, here, immediately after the NULL assignment to "sc_task", it is
possible that nilfs_segctor_kill_thread() will detect it and return to
continue the deallocation, freeing the nilfs_sc_info structure before the
thread does the notification.
This fixes the issue by protecting the NULL assignment to "sc_task" and
its notification, with spinlock "sc_state_lock" of the struct
nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to
see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate
the race.
In the Linux kernel, the following vulnerability has been resolved:
ipmi_si: fix a memleak in try_smi_init()
Kmemleak reported the following leak info in try_smi_init():
unreferenced object 0xffff00018ecf9400 (size 1024):
comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s)
backtrace:
[<000000004ca5b312>] __kmalloc+0x4b8/0x7b0
[<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si]
[<000000006460d325>] 0xffff800081b10148
[<0000000039206ea5>] do_one_initcall+0x64/0x2a4
[<00000000601399ce>] do_init_module+0x50/0x300
[<000000003c12ba3c>] load_module+0x7a8/0x9e0
[<00000000c246fffe>] __se_sys_init_module+0x104/0x180
[<00000000eea99093>] __arm64_sys_init_module+0x24/0x30
[<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250
[<0000000070f4f8b7>] do_el0_svc+0x48/0xe0
[<000000005a05337f>] el0_svc+0x24/0x3c
[<000000005eb248d6>] el0_sync_handler+0x160/0x164
[<0000000030a59039>] el0_sync+0x160/0x180
The problem was that when an error occurred before handlers registration
and after allocating `new_smi->si_sm`, the variable wouldn't be freed in
the error handling afterwards since `shutdown_smi()` hadn't been
registered yet. Fix it by adding a `kfree()` in the error handling path
in `try_smi_init()`.