Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.146  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: ARM: OMAP2+: omap4-common: Fix refcount leak bug In omap4_sram_init(), of_find_compatible_node() will return a node pointer with refcount incremented. We should use of_node_put() when it is not used anymore.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: media: si470x: Fix use-after-free in si470x_int_in_callback() syzbot reported use-after-free in si470x_int_in_callback() [1]. This indicates that urb->context, which contains struct si470x_device object, is freed when si470x_int_in_callback() is called. The cause of this issue is that si470x_int_in_callback() is called for freed urb. si470x_usb_driver_probe() calls si470x_start_usb(), which then calls usb_submit_urb() and si470x_start(). If si470x_start_usb() fails, si470x_usb_driver_probe() doesn't kill urb, but it just frees struct si470x_device object, as depicted below: si470x_usb_driver_probe() ... si470x_start_usb() ... usb_submit_urb() retval = si470x_start() return retval if (retval < 0) free struct si470x_device object, but don't kill urb This patch fixes this issue by killing urb when si470x_start_usb() fails and urb is submitted. If si470x_start_usb() fails and urb is not submitted, i.e. submitting usb fails, it just frees struct si470x_device object.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info() xhci_alloc_stream_info() allocates stream context array for stream_info ->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs, stream_info->stream_ctx_array is not released, which will lead to a memory leak. We can fix it by releasing the stream_info->stream_ctx_array with xhci_free_stream_ctx() on the error path to avoid the potential memory leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: r6040: Fix kmemleak in probe and remove There is a memory leaks reported by kmemleak: unreferenced object 0xffff888116111000 (size 2048): comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s) hex dump (first 32 bytes): 00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................ 08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff815bcd82>] kmalloc_trace+0x22/0x60 [<ffffffff827e20ee>] phy_device_create+0x4e/0x90 [<ffffffff827e6072>] get_phy_device+0xd2/0x220 [<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0 [<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0 [<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040] ... The problem occurs in probe process as follows: r6040_init_one: mdiobus_register mdiobus_scan <- alloc and register phy_device, the reference count of phy_device is 3 r6040_mii_probe phy_connect <- connect to the first phy_device, so the reference count of the first phy_device is 4, others are 3 register_netdev <- fault inject succeeded, goto error handling path // error handling path err_out_mdio_unregister: mdiobus_unregister(lp->mii_bus); err_out_mdio: mdiobus_free(lp->mii_bus); <- the reference count of the first phy_device is 1, it is not released and other phy_devices are released // similarly, the remove process also has the same problem The root cause is traced to the phy_device is not disconnected when removes one r6040 device in r6040_remove_one() or on error handling path after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet device is connected to the first PHY device of mii_bus, in order to notify the connected driver when the link status changes, which is the default behavior of the PHY infrastructure to handle everything. Therefore the phy_device should be disconnected when removes one r6040 device or on error handling path. Fix it by adding phy_disconnect() when removes one r6040 device or on error handling path after r6040_mii probed successfully.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: tipc: fix an information leak in tipc_topsrv_kern_subscr Use a 8-byte write to initialize sub.usr_handle in tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized when issuing setsockopt(..., SOL_TIPC, ...). This resulted in an infoleak reported by KMSAN when the packet was received: ===================================================== BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169 instrument_copy_to_user ./include/linux/instrumented.h:121 copyout+0xbc/0x100 lib/iov_iter.c:169 _copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527 copy_to_iter ./include/linux/uio.h:176 simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527 skb_copy_datagram_msg ./include/linux/skbuff.h:3903 packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469 ____sys_recvmsg+0x2c4/0x810 net/socket.c:? ___sys_recvmsg+0x217/0x840 net/socket.c:2743 __sys_recvmsg net/socket.c:2773 __do_sys_recvmsg net/socket.c:2783 __se_sys_recvmsg net/socket.c:2780 __x64_sys_recvmsg+0x364/0x540 net/socket.c:2780 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 ... Uninit was stored to memory at: tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156 tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375 tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084 tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201 __sys_setsockopt+0x87f/0xdc0 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 __se_sys_setsockopt net/socket.c:2260 __x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 Local variable sub created at: tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 Bytes 84-87 of 88 are uninitialized Memory access of size 88 starts at ffff88801ed57cd0 Data copied to user address 0000000020000400 ... =====================================================
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Fix possible resource leaks in mpt3sas_transport_port_add() In mpt3sas_transport_port_add(), if sas_rphy_add() returns error, sas_rphy_free() needs be called to free the resource allocated in sas_end_device_alloc(). Otherwise a kernel crash will happen: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 CPU: 45 PID: 37020 Comm: bash Kdump: loaded Tainted: G W 6.1.0-rc1+ #189 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x54/0x3d0 lr : device_del+0x37c/0x3d0 Call trace: device_del+0x54/0x3d0 attribute_container_class_device_del+0x28/0x38 transport_remove_classdev+0x6c/0x80 attribute_container_device_trigger+0x108/0x110 transport_remove_device+0x28/0x38 sas_rphy_remove+0x50/0x78 [scsi_transport_sas] sas_port_delete+0x30/0x148 [scsi_transport_sas] do_sas_phy_delete+0x78/0x80 [scsi_transport_sas] device_for_each_child+0x68/0xb0 sas_remove_children+0x30/0x50 [scsi_transport_sas] sas_rphy_remove+0x38/0x78 [scsi_transport_sas] sas_port_delete+0x30/0x148 [scsi_transport_sas] do_sas_phy_delete+0x78/0x80 [scsi_transport_sas] device_for_each_child+0x68/0xb0 sas_remove_children+0x30/0x50 [scsi_transport_sas] sas_remove_host+0x20/0x38 [scsi_transport_sas] scsih_remove+0xd8/0x420 [mpt3sas] Because transport_add_device() is not called when sas_rphy_add() fails, the device is not added. When sas_rphy_remove() is subsequently called to remove the device in the remove() path, a NULL pointer dereference happens.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: dm thin: Use last transaction's pmd->root when commit failed Recently we found a softlock up problem in dm thin pool btree lookup code due to corrupted metadata: Kernel panic - not syncing: softlockup: hung tasks CPU: 7 PID: 2669225 Comm: kworker/u16:3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: dm-thin do_worker [dm_thin_pool] Call Trace: <IRQ> dump_stack+0x9c/0xd3 panic+0x35d/0x6b9 watchdog_timer_fn.cold+0x16/0x25 __run_hrtimer+0xa2/0x2d0 </IRQ> RIP: 0010:__relink_lru+0x102/0x220 [dm_bufio] __bufio_new+0x11f/0x4f0 [dm_bufio] new_read+0xa3/0x1e0 [dm_bufio] dm_bm_read_lock+0x33/0xd0 [dm_persistent_data] ro_step+0x63/0x100 [dm_persistent_data] btree_lookup_raw.constprop.0+0x44/0x220 [dm_persistent_data] dm_btree_lookup+0x16f/0x210 [dm_persistent_data] dm_thin_find_block+0x12c/0x210 [dm_thin_pool] __process_bio_read_only+0xc5/0x400 [dm_thin_pool] process_thin_deferred_bios+0x1a4/0x4a0 [dm_thin_pool] process_one_work+0x3c5/0x730 Following process may generate a broken btree mixed with fresh and stale btree nodes, which could get dm thin trapped in an infinite loop while looking up data block: Transaction 1: pmd->root = A, A->B->C // One path in btree pmd->root = X, X->Y->Z // Copy-up Transaction 2: X,Z is updated on disk, Y write failed. // Commit failed, dm thin becomes read-only. process_bio_read_only dm_thin_find_block __find_block dm_btree_lookup(pmd->root) The pmd->root points to a broken btree, Y may contain stale node pointing to any block, for example X, which gets dm thin trapped into a dead loop while looking up Z. Fix this by setting pmd->root in __open_metadata(), so that dm thin will use the last transaction's pmd->root if commit failed. Fetch a reproducer in [Link]. Linke: https://bugzilla.kernel.org/show_bug.cgi?id=216790
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: mcb: mcb-parse: fix error handing in chameleon_parse_gdd() If mcb_device_register() returns error in chameleon_parse_gdd(), the refcount of bus and device name are leaked. Fix this by calling put_device() to give up the reference, so they can be released in mcb_release_dev() and kobject_cleanup().
CVSS Score
3.3
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: clk: rockchip: Fix memory leak in rockchip_clk_register_pll() If clk_register() fails, @pll->rate_table may have allocated memory by kmemdup(), so it needs to be freed, otherwise will cause memory leak issue, this patch fixes it.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: iommu/fsl_pamu: Fix resource leak in fsl_pamu_probe() The fsl_pamu_probe() returns directly when create_csd() failed, leaving irq and memories unreleased. Fix by jumping to error if create_csd() returns error.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07


Contact Us

Shodan ® - All rights reserved