Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.175  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp. syzkaller reported [0] memory leaks of an UDP socket and ZEROCOPY skbs. We can reproduce the problem with these sequences: sk = socket(AF_INET, SOCK_DGRAM, 0) sk.setsockopt(SOL_SOCKET, SO_TIMESTAMPING, SOF_TIMESTAMPING_TX_SOFTWARE) sk.setsockopt(SOL_SOCKET, SO_ZEROCOPY, 1) sk.sendto(b'', MSG_ZEROCOPY, ('127.0.0.1', 53)) sk.close() sendmsg() calls msg_zerocopy_alloc(), which allocates a skb, sets skb->cb->ubuf.refcnt to 1, and calls sock_hold(). Here, struct ubuf_info_msgzc indirectly holds a refcnt of the socket. When the skb is sent, __skb_tstamp_tx() clones it and puts the clone into the socket's error queue with the TX timestamp. When the original skb is received locally, skb_copy_ubufs() calls skb_unclone(), and pskb_expand_head() increments skb->cb->ubuf.refcnt. This additional count is decremented while freeing the skb, but struct ubuf_info_msgzc still has a refcnt, so __msg_zerocopy_callback() is not called. The last refcnt is not released unless we retrieve the TX timestamped skb by recvmsg(). Since we clear the error queue in inet_sock_destruct() after the socket's refcnt reaches 0, there is a circular dependency. If we close() the socket holding such skbs, we never call sock_put() and leak the count, sk, and skb. TCP has the same problem, and commit e0c8bccd40fc ("net: stream: purge sk_error_queue in sk_stream_kill_queues()") tried to fix it by calling skb_queue_purge() during close(). However, there is a small chance that skb queued in a qdisc or device could be put into the error queue after the skb_queue_purge() call. In __skb_tstamp_tx(), the cloned skb should not have a reference to the ubuf to remove the circular dependency, but skb_clone() does not call skb_copy_ubufs() for zerocopy skb. So, we need to call skb_orphan_frags_rx() for the cloned skb to call skb_copy_ubufs(). [0]: BUG: memory leak unreferenced object 0xffff88800c6d2d00 (size 1152): comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 cd af e8 81 00 00 00 00 ................ 02 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<0000000055636812>] sk_prot_alloc+0x64/0x2a0 net/core/sock.c:2024 [<0000000054d77b7a>] sk_alloc+0x3b/0x800 net/core/sock.c:2083 [<0000000066f3c7e0>] inet_create net/ipv4/af_inet.c:319 [inline] [<0000000066f3c7e0>] inet_create+0x31e/0xe40 net/ipv4/af_inet.c:245 [<000000009b83af97>] __sock_create+0x2ab/0x550 net/socket.c:1515 [<00000000b9b11231>] sock_create net/socket.c:1566 [inline] [<00000000b9b11231>] __sys_socket_create net/socket.c:1603 [inline] [<00000000b9b11231>] __sys_socket_create net/socket.c:1588 [inline] [<00000000b9b11231>] __sys_socket+0x138/0x250 net/socket.c:1636 [<000000004fb45142>] __do_sys_socket net/socket.c:1649 [inline] [<000000004fb45142>] __se_sys_socket net/socket.c:1647 [inline] [<000000004fb45142>] __x64_sys_socket+0x73/0xb0 net/socket.c:1647 [<0000000066999e0e>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<0000000066999e0e>] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80 [<0000000017f238c1>] entry_SYSCALL_64_after_hwframe+0x63/0xcd BUG: memory leak unreferenced object 0xffff888017633a00 (size 240): comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 2d 6d 0c 80 88 ff ff .........-m..... backtrace: [<000000002b1c4368>] __alloc_skb+0x229/0x320 net/core/skbuff.c:497 [<00000000143579a6>] alloc_skb include/linux/skbuff.h:1265 [inline] [<00000000143579a6>] sock_omalloc+0xaa/0x190 net/core/sock.c:2596 [<00000000be626478>] msg_zerocopy_alloc net/core/skbuff.c:1294 [inline] [<00000000be626478>] ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: ipv6: Add lwtunnel encap size of all siblings in nexthop calculation In function rt6_nlmsg_size(), the length of nexthop is calculated by multipling the nexthop length of fib6_info and the number of siblings. However if the fib6_info has no lwtunnel but the siblings have lwtunnels, the nexthop length is less than it should be, and it will trigger a warning in inet6_rt_notify() as follows: WARNING: CPU: 0 PID: 6082 at net/ipv6/route.c:6180 inet6_rt_notify+0x120/0x130 ...... Call Trace: <TASK> fib6_add_rt2node+0x685/0xa30 fib6_add+0x96/0x1b0 ip6_route_add+0x50/0xd0 inet6_rtm_newroute+0x97/0xa0 rtnetlink_rcv_msg+0x156/0x3d0 netlink_rcv_skb+0x5a/0x110 netlink_unicast+0x246/0x350 netlink_sendmsg+0x250/0x4c0 sock_sendmsg+0x66/0x70 ___sys_sendmsg+0x7c/0xd0 __sys_sendmsg+0x5d/0xb0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc This bug can be reproduced by script: ip -6 addr add 2002::2/64 dev ens2 ip -6 route add 100::/64 via 2002::1 dev ens2 metric 100 for i in 10 20 30 40 50 60 70; do ip link add link ens2 name ipv_$i type ipvlan ip -6 addr add 2002::$i/64 dev ipv_$i ifconfig ipv_$i up done for i in 10 20 30 40 50 60; do ip -6 route append 100::/64 encap ip6 dst 2002::$i via 2002::1 dev ipv_$i metric 100 done ip -6 route append 100::/64 via 2002::1 dev ipv_70 metric 100 This patch fixes it by adding nexthop_len of every siblings using rt6_nh_nlmsg_size().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: ubi: ubi_wl_put_peb: Fix infinite loop when wear-leveling work failed Following process will trigger an infinite loop in ubi_wl_put_peb(): ubifs_bgt ubi_bgt ubifs_leb_unmap ubi_leb_unmap ubi_eba_unmap_leb ubi_wl_put_peb wear_leveling_worker e1 = rb_entry(rb_first(&ubi->used) e2 = get_peb_for_wl(ubi) ubi_io_read_vid_hdr // return err (flash fault) out_error: ubi->move_from = ubi->move_to = NULL wl_entry_destroy(ubi, e1) ubi->lookuptbl[e->pnum] = NULL retry: e = ubi->lookuptbl[pnum]; // return NULL if (e == ubi->move_from) { // NULL == NULL gets true goto retry; // infinite loop !!! $ top PID USER PR NI VIRT RES SHR S %CPU %MEM COMMAND 7676 root 20 0 0 0 0 R 100.0 0.0 ubifs_bgt0_0 Fix it by: 1) Letting ubi_wl_put_peb() returns directly if wearl leveling entry has been removed from 'ubi->lookuptbl'. 2) Using 'ubi->wl_lock' protecting wl entry deletion to preventing an use-after-free problem for wl entry in ubi_wl_put_peb(). Fetch a reproducer in [Link].
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: iommu: Fix error unwind in iommu_group_alloc() If either iommu_group_grate_file() fails then the iommu_group is leaked. Destroy it on these error paths. Found by kselftest/iommu/iommufd_fail_nth
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/gfx: disable gfx9 cp_ecc_error_irq only when enabling legacy gfx ras gfx9 cp_ecc_error_irq is only enabled when legacy gfx ras is assert. So in gfx_v9_0_hw_fini, interrupt disablement for cp_ecc_error_irq should be executed under such condition, otherwise, an amdgpu_irq_put calltrace will occur. [ 7283.170322] RIP: 0010:amdgpu_irq_put+0x45/0x70 [amdgpu] [ 7283.170964] RSP: 0018:ffff9a5fc3967d00 EFLAGS: 00010246 [ 7283.170967] RAX: ffff98d88afd3040 RBX: ffff98d89da20000 RCX: 0000000000000000 [ 7283.170969] RDX: 0000000000000000 RSI: ffff98d89da2bef8 RDI: ffff98d89da20000 [ 7283.170971] RBP: ffff98d89da20000 R08: ffff98d89da2ca18 R09: 0000000000000006 [ 7283.170973] R10: ffffd5764243c008 R11: 0000000000000000 R12: 0000000000001050 [ 7283.170975] R13: ffff98d89da38978 R14: ffffffff999ae15a R15: ffff98d880130105 [ 7283.170978] FS: 0000000000000000(0000) GS:ffff98d996f00000(0000) knlGS:0000000000000000 [ 7283.170981] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7283.170983] CR2: 00000000f7a9d178 CR3: 00000001c42ea000 CR4: 00000000003506e0 [ 7283.170986] Call Trace: [ 7283.170988] <TASK> [ 7283.170989] gfx_v9_0_hw_fini+0x1c/0x6d0 [amdgpu] [ 7283.171655] amdgpu_device_ip_suspend_phase2+0x101/0x1a0 [amdgpu] [ 7283.172245] amdgpu_device_suspend+0x103/0x180 [amdgpu] [ 7283.172823] amdgpu_pmops_freeze+0x21/0x60 [amdgpu] [ 7283.173412] pci_pm_freeze+0x54/0xc0 [ 7283.173419] ? __pfx_pci_pm_freeze+0x10/0x10 [ 7283.173425] dpm_run_callback+0x98/0x200 [ 7283.173430] __device_suspend+0x164/0x5f0 v2: drop gfx11 as it's fixed in a different solution by retiring cp_ecc_irq funcs(Hawking)
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memory leak in alloc_wbufs() kmemleak reported a sequence of memory leaks, and show them as following: unreferenced object 0xffff8881575f8400 (size 1024): comm "mount", pid 19625, jiffies 4297119604 (age 20.383s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa0406b2b>] ubifs_mount+0x307b/0x7170 [ubifs] [<ffffffff819fa8fd>] legacy_get_tree+0xed/0x1d0 [<ffffffff81936f2d>] vfs_get_tree+0x7d/0x230 [<ffffffff819b2bd4>] path_mount+0xdd4/0x17b0 [<ffffffff819b37aa>] __x64_sys_mount+0x1fa/0x270 [<ffffffff83c14295>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff8881798a6e00 (size 512): comm "mount", pid 19677, jiffies 4297121912 (age 37.816s) hex dump (first 32 bytes): 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa0418342>] ubifs_wbuf_init+0x52/0x480 [ubifs] [<ffffffffa0406ca5>] ubifs_mount+0x31f5/0x7170 [ubifs] [<ffffffff819fa8fd>] legacy_get_tree+0xed/0x1d0 [<ffffffff81936f2d>] vfs_get_tree+0x7d/0x230 [<ffffffff819b2bd4>] path_mount+0xdd4/0x17b0 [<ffffffff819b37aa>] __x64_sys_mount+0x1fa/0x270 [<ffffffff83c14295>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 The problem is that the ubifs_wbuf_init() returns an error in the loop which in the alloc_wbufs(), then the wbuf->buf and wbuf->inodes that were successfully alloced before are not freed. Fix it by adding error hanging path in alloc_wbufs() which frees the memory alloced before when ubifs_wbuf_init() returns an error.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: FS: JFS: Fix null-ptr-deref Read in txBegin Syzkaller reported an issue where txBegin may be called on a superblock in a read-only mounted filesystem which leads to NULL pointer deref. This could be solved by checking if the filesystem is read-only before calling txBegin, and returning with appropiate error code.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: media: cx23885: Fix a null-ptr-deref bug in buffer_prepare() and buffer_finish() When the driver calls cx23885_risc_buffer() to prepare the buffer, the function call dma_alloc_coherent may fail, resulting in a empty buffer risc->cpu. Later when we free the buffer or access the buffer, null ptr deref is triggered. This bug is similar to the following one: https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71. We believe the bug can be also dynamically triggered from user side. Similarly, we fix this by checking the return value of cx23885_risc_buffer() and the value of risc->cpu before buffer free.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: scsi: qla4xxx: Add length check when parsing nlattrs There are three places that qla4xxx parses nlattrs: - qla4xxx_set_chap_entry() - qla4xxx_iface_set_param() - qla4xxx_sysfs_ddb_set_param() and each of them directly converts the nlattr to specific pointer of structure without length checking. This could be dangerous as those attributes are not validated and a malformed nlattr (e.g., length 0) could result in an OOB read that leaks heap dirty data. Add the nla_len check before accessing the nlattr data and return EINVAL if the length check fails.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix potential NULL pointer dereference Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate pointer before dereferencing the pointer.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01


Contact Us

Shodan ® - All rights reserved