In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE
There is a WARN_ON_ONCE to catch an unlikely situation when
domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless
happens we must avoid using a NULL pointer.
In the Linux kernel, the following vulnerability has been resolved:
tomoyo: don't emit warning in tomoyo_write_control()
syzbot is reporting too large allocation warning at tomoyo_write_control(),
for one can write a very very long line without new line character. To fix
this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE,
for practically a valid line should be always shorter than 32KB where the
"too small to fail" memory-allocation rule applies.
One might try to write a valid line that is longer than 32KB, but such
request will likely fail with -ENOMEM. Therefore, I feel that separately
returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant.
There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: oss: Fix race at SNDCTL_DSP_SYNC
There is a small race window at snd_pcm_oss_sync() that is called from
OSS PCM SNDCTL_DSP_SYNC ioctl; namely the function calls
snd_pcm_oss_make_ready() at first, then takes the params_lock mutex
for the rest. When the stream is set up again by another thread
between them, it leads to inconsistency, and may result in unexpected
results such as NULL dereference of OSS buffer as a fuzzer spotted
recently.
The fix is simply to cover snd_pcm_oss_make_ready() call into the same
params_lock mutex with snd_pcm_oss_make_ready_locked() variant.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: omap: use threaded IRQ for LCD DMA
When using touchscreen and framebuffer, Nokia 770 crashes easily with:
BUG: scheduling while atomic: irq/144-ads7846/82/0x00010000
Modules linked in: usb_f_ecm g_ether usb_f_rndis u_ether libcomposite configfs omap_udc ohci_omap ohci_hcd
CPU: 0 UID: 0 PID: 82 Comm: irq/144-ads7846 Not tainted 6.12.7-770 #2
Hardware name: Nokia 770
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x54/0x5c
dump_stack_lvl from __schedule_bug+0x50/0x70
__schedule_bug from __schedule+0x4d4/0x5bc
__schedule from schedule+0x34/0xa0
schedule from schedule_preempt_disabled+0xc/0x10
schedule_preempt_disabled from __mutex_lock.constprop.0+0x218/0x3b4
__mutex_lock.constprop.0 from clk_prepare_lock+0x38/0xe4
clk_prepare_lock from clk_set_rate+0x18/0x154
clk_set_rate from sossi_read_data+0x4c/0x168
sossi_read_data from hwa742_read_reg+0x5c/0x8c
hwa742_read_reg from send_frame_handler+0xfc/0x300
send_frame_handler from process_pending_requests+0x74/0xd0
process_pending_requests from lcd_dma_irq_handler+0x50/0x74
lcd_dma_irq_handler from __handle_irq_event_percpu+0x44/0x130
__handle_irq_event_percpu from handle_irq_event+0x28/0x68
handle_irq_event from handle_level_irq+0x9c/0x170
handle_level_irq from generic_handle_domain_irq+0x2c/0x3c
generic_handle_domain_irq from omap1_handle_irq+0x40/0x8c
omap1_handle_irq from generic_handle_arch_irq+0x28/0x3c
generic_handle_arch_irq from call_with_stack+0x1c/0x24
call_with_stack from __irq_svc+0x94/0xa8
Exception stack(0xc5255da0 to 0xc5255de8)
5da0: 00000001 c22fc620 00000000 00000000 c08384a8 c106fc00 00000000 c240c248
5dc0: c113a600 c3f6ec30 00000001 00000000 c22fc620 c5255df0 c22fc620 c0279a94
5de0: 60000013 ffffffff
__irq_svc from clk_prepare_lock+0x4c/0xe4
clk_prepare_lock from clk_get_rate+0x10/0x74
clk_get_rate from uwire_setup_transfer+0x40/0x180
uwire_setup_transfer from spi_bitbang_transfer_one+0x2c/0x9c
spi_bitbang_transfer_one from spi_transfer_one_message+0x2d0/0x664
spi_transfer_one_message from __spi_pump_transfer_message+0x29c/0x498
__spi_pump_transfer_message from __spi_sync+0x1f8/0x2e8
__spi_sync from spi_sync+0x24/0x40
spi_sync from ads7846_halfd_read_state+0x5c/0x1c0
ads7846_halfd_read_state from ads7846_irq+0x58/0x348
ads7846_irq from irq_thread_fn+0x1c/0x78
irq_thread_fn from irq_thread+0x120/0x228
irq_thread from kthread+0xc8/0xe8
kthread from ret_from_fork+0x14/0x28
As a quick fix, switch to a threaded IRQ which provides a stable system.
In the Linux kernel, the following vulnerability has been resolved:
orangefs: fix a oob in orangefs_debug_write
I got a syzbot report: slab-out-of-bounds Read in
orangefs_debug_write... several people suggested fixes,
I tested Al Viro's suggestion and made this patch.
In the Linux kernel, the following vulnerability has been resolved:
workqueue: Put the pwq after detaching the rescuer from the pool
The commit 68f83057b913("workqueue: Reap workers via kthread_stop() and
remove detach_completion") adds code to reap the normal workers but
mistakenly does not handle the rescuer and also removes the code waiting
for the rescuer in put_unbound_pool(), which caused a use-after-free bug
reported by Cheung Wall.
To avoid the use-after-free bug, the pool’s reference must be held until
the detachment is complete. Therefore, move the code that puts the pwq
after detaching the rescuer from the pool.
In the Linux kernel, the following vulnerability has been resolved:
USB: hub: Ignore non-compliant devices with too many configs or interfaces
Robert Morris created a test program which can cause
usb_hub_to_struct_hub() to dereference a NULL or inappropriate
pointer:
Oops: general protection fault, probably for non-canonical address
0xcccccccccccccccc: 0000 [#1] SMP DEBUG_PAGEALLOC PTI
CPU: 7 UID: 0 PID: 117 Comm: kworker/7:1 Not tainted 6.13.0-rc3-00017-gf44d154d6e3d #14
Hardware name: FreeBSD BHYVE/BHYVE, BIOS 14.0 10/17/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_hub_adjust_deviceremovable+0x78/0x110
...
Call Trace:
<TASK>
? die_addr+0x31/0x80
? exc_general_protection+0x1b4/0x3c0
? asm_exc_general_protection+0x26/0x30
? usb_hub_adjust_deviceremovable+0x78/0x110
hub_probe+0x7c7/0xab0
usb_probe_interface+0x14b/0x350
really_probe+0xd0/0x2d0
? __pfx___device_attach_driver+0x10/0x10
__driver_probe_device+0x6e/0x110
driver_probe_device+0x1a/0x90
__device_attach_driver+0x7e/0xc0
bus_for_each_drv+0x7f/0xd0
__device_attach+0xaa/0x1a0
bus_probe_device+0x8b/0xa0
device_add+0x62e/0x810
usb_set_configuration+0x65d/0x990
usb_generic_driver_probe+0x4b/0x70
usb_probe_device+0x36/0xd0
The cause of this error is that the device has two interfaces, and the
hub driver binds to interface 1 instead of interface 0, which is where
usb_hub_to_struct_hub() looks.
We can prevent the problem from occurring by refusing to accept hub
devices that violate the USB spec by having more than one
configuration or interface.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: avoid buffer overflow attach in smu_sys_set_pp_table()
It malicious user provides a small pptable through sysfs and then
a bigger pptable, it may cause buffer overflow attack in function
smu_sys_set_pp_table().
In the Linux kernel, the following vulnerability has been resolved:
partitions: mac: fix handling of bogus partition table
Fix several issues in partition probing:
- The bailout for a bad partoffset must use put_dev_sector(), since the
preceding read_part_sector() succeeded.
- If the partition table claims a silly sector size like 0xfff bytes
(which results in partition table entries straddling sector boundaries),
bail out instead of accessing out-of-bounds memory.
- We must not assume that the partition table contains proper NUL
termination - use strnlen() and strncmp() instead of strlen() and
strcmp().
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize()
On removal of the device or unloading of the kernel module a potential NULL
pointer dereference occurs.
The following sequence deletes the interface:
brcmf_detach()
brcmf_remove_interface()
brcmf_del_if()
Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to
BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches.
After brcmf_remove_interface() call the brcmf_proto_detach() function is
called providing the following sequence:
brcmf_detach()
brcmf_proto_detach()
brcmf_proto_msgbuf_detach()
brcmf_flowring_detach()
brcmf_msgbuf_delete_flowring()
brcmf_msgbuf_remove_flowring()
brcmf_flowring_delete()
brcmf_get_ifp()
brcmf_txfinalize()
Since brcmf_get_ip() can and actually will return NULL in this case the
call to brcmf_txfinalize() will result in a NULL pointer dereference inside
brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors.
This will only happen if a flowring still has an skb.
Although the NULL pointer dereference has only been seen when trying to
update the tx statistic, all other uses of the ifp pointer have been
guarded as well with an early return if ifp is NULL.