A segmentation fault was discovered in radare2 with adf command. In libr/core/cmd_anal.c, when command "adf" has no or wrong argument, anal_fcn_data (core, input + 1) --> RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, core->offset, -1); returns null pointer for fcn causing segmentation fault later in ensure_fcn_range (fcn).
Radare2 v5.7.0 was discovered to contain a heap buffer overflow via the function consume_encoded_name_new at format/wasm/wasm.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted binary file.
Radare2 v5.7.2 was discovered to contain a NULL pointer dereference via the function r_bin_file_xtr_load_buffer at bin/bfile.c. This vulnerability allows attackers to cause a Denial of Service (DOS) via a crafted binary file.
Out-of-bounds Read in GitHub repository radareorg/radare2 prior to 5.7.0. The bug causes the program reads data past the end of the intented buffer. Typically, this can allow attackers to read sensitive information from other memory locations or cause a crash.
Null pointer dereference in libr/bin/format/mach0/mach0.c in radareorg/radare2 in GitHub repository radareorg/radare2 prior to 5.7.0. It is likely to be exploitable. For more general description of heap buffer overflow, see [CWE](https://cwe.mitre.org/data/definitions/476.html).
Out-of-bounds Read in r_bin_java_constant_value_attr_new function in GitHub repository radareorg/radare2 prior to 5.7.0. The bug causes the program reads data past the end 2f the intented buffer. Typically, this can allow attackers to read sensitive information from other memory locations or cause a crash. More details see [CWE-125: Out-of-bounds read](https://cwe.mitre.org/data/definitions/125.html).