Mozilla Network Security Services (NSS) 3.x, with certain settings of the SSL_ENABLE_RENEGOTIATION option, does not properly restrict client-initiated renegotiation within the SSL and TLS protocols, which might make it easier for remote attackers to cause a denial of service (CPU consumption) by performing many renegotiations within a single connection, a different vulnerability than CVE-2011-1473. NOTE: it can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment
The ASN.1 decoder in the QuickDER decoder in Mozilla Network Security Services (NSS) before 3.13.4, as used in Firefox 4.x through 12.0, Firefox ESR 10.x before 10.0.5, Thunderbird 5.0 through 12.0, Thunderbird ESR 10.x before 10.0.5, and SeaMonkey before 2.10, allows remote attackers to cause a denial of service (application crash) via a zero-length item, as demonstrated by (1) a zero-length basic constraint or (2) a zero-length field in an OCSP response.
Heap-based buffer overflow in a regular-expression parser in Mozilla Network Security Services (NSS) before 3.12.3, as used in Firefox, Thunderbird, SeaMonkey, Evolution, Pidgin, and AOL Instant Messenger (AIM), allows remote SSL servers to cause a denial of service (application crash) or possibly execute arbitrary code via a long domain name in the subject's Common Name (CN) field of an X.509 certificate, related to the cert_TestHostName function.
Mozilla Network Security Services (NSS) before 3.12.3, Firefox before 3.0.13, Thunderbird before 2.0.0.23, and SeaMonkey before 1.1.18 do not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority. NOTE: this was originally reported for Firefox before 3.5.
The Network Security Services (NSS) library before 3.12.3, as used in Firefox; GnuTLS before 2.6.4 and 2.7.4; OpenSSL 0.9.8 through 0.9.8k; and other products support MD2 with X.509 certificates, which might allow remote attackers to spoof certificates by using MD2 design flaws to generate a hash collision in less than brute-force time. NOTE: the scope of this issue is currently limited because the amount of computation required is still large.
Integer underflow in the SSLv2 support in Mozilla Network Security Services (NSS) before 3.11.5, as used by Firefox before 1.5.0.10 and 2.x before 2.0.0.2, SeaMonkey before 1.0.8, Thunderbird before 1.5.0.10, and certain Sun Java System server products before 20070611, allows remote attackers to execute arbitrary code via a crafted SSLv2 server message containing a public key that is too short to encrypt the "Master Secret", which results in a heap-based overflow.
Stack-based buffer overflow in the SSLv2 support in Mozilla Network Security Services (NSS) before 3.11.5, as used by Firefox before 1.5.0.10 and 2.x before 2.0.0.2, Thunderbird before 1.5.0.10, SeaMonkey before 1.0.8, and certain Sun Java System server products before 20070611, allows remote attackers to execute arbitrary code via invalid "Client Master Key" length values.
Mozilla Network Security Service (NSS) library before 3.11.3, as used in Mozilla Firefox before 1.5.0.8, Thunderbird before 1.5.0.8, and SeaMonkey before 1.0.6, when using an RSA key with exponent 3, does not properly handle extra data in a signature, which allows remote attackers to forge signatures for SSL/TLS and email certificates. NOTE: this identifier is for unpatched product versions that were originally intended to be addressed by CVE-2006-4340.
Mozilla Network Security Service (NSS) library before 3.11.3, as used in Mozilla Firefox before 1.5.0.7, Thunderbird before 1.5.0.7, and SeaMonkey before 1.0.5, when using an RSA key with exponent 3, does not properly handle extra data in a signature, which allows remote attackers to forge signatures for SSL/TLS and email certificates, a similar vulnerability to CVE-2006-4339. NOTE: on 20061107, Mozilla released an advisory stating that these versions were not completely patched by MFSA2006-60. The newer fixes for 1.5.0.7 are covered by CVE-2006-5462.
Heap-based buffer overflow in Netscape Network Security Services (NSS) library allows remote attackers to execute arbitrary code via a modified record length field in an SSLv2 client hello message.