In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction
The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last
deref") simplified cm_id resource management by freeing cm_id once all
references to the cm_id were removed. The references are removed either
upon completion of iw_cm event handlers or when the application destroys
the cm_id. This commit introduced the use-after-free condition where
cm_id_private object could still be in use by event handler works during
the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a
use-after-free related to destroying CM IDs") addressed this use-after-
free by flushing all pending works at the cm_id destruction.
However, still another use-after-free possibility remained. It happens
with the work objects allocated for each cm_id_priv within
alloc_work_entries() during cm_id creation, and subsequently freed in
dealloc_work_entries() once all references to the cm_id are removed.
If the cm_id's last reference is decremented in the event handler work,
the work object for the work itself gets removed, and causes the use-
after-free BUG below:
BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250
Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091
CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Workqueue: 0x0 (iw_cm_wq)
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x90
print_report+0x174/0x554
? __virt_addr_valid+0x208/0x430
? __pwq_activate_work+0x1ff/0x250
kasan_report+0xae/0x170
? __pwq_activate_work+0x1ff/0x250
__pwq_activate_work+0x1ff/0x250
pwq_dec_nr_in_flight+0x8c5/0xfb0
process_one_work+0xc11/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5ef/0xfd0
? __pfx_worker_thread+0x10/0x10
kthread+0x3b0/0x770
? __pfx_kthread+0x10/0x10
? rcu_is_watching+0x11/0xb0
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 147416:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
alloc_work_entries+0xa9/0x260 [iw_cm]
iw_cm_connect+0x23/0x4a0 [iw_cm]
rdma_connect_locked+0xbfd/0x1920 [rdma_cm]
nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma]
cma_cm_event_handler+0xae/0x320 [rdma_cm]
cma_work_handler+0x106/0x1b0 [rdma_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 147091:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kfree+0x13a/0x4b0
dealloc_work_entries+0x125/0x1f0 [iw_cm]
iwcm_deref_id+0x6f/0xa0 [iw_cm]
cm_work_handler+0x136/0x1ba0 [iw_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x2c/0x50
kasan_record_aux_stack+0xa3/0xb0
__queue_work+0x2ff/0x1390
queue_work_on+0x67/0xc0
cm_event_handler+0x46a/0x820 [iw_cm]
siw_cm_upcall+0x330/0x650 [siw]
siw_cm_work_handler+0x6b9/0x2b20 [siw]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
This BUG is reproducible by repeating the blktests test case nvme/061
for the rdma transport and the siw driver.
To avoid the use-after-free of cm_id_private work objects, ensure that
the last reference to the cm_id is decremented not in the event handler
works, but in the cm_id destruction context. For that purpose, mo
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ipc: fix to protect IPCS lookups using RCU
syzbot reported that it discovered a use-after-free vulnerability, [0]
[0]: https://lore.kernel.org/all/67af13f8.050a0220.21dd3.0038.GAE@google.com/
idr_for_each() is protected by rwsem, but this is not enough. If it is
not protected by RCU read-critical region, when idr_for_each() calls
radix_tree_node_free() through call_rcu() to free the radix_tree_node
structure, the node will be freed immediately, and when reading the next
node in radix_tree_for_each_slot(), the already freed memory may be read.
Therefore, we need to add code to make sure that idr_for_each() is
protected within the RCU read-critical region when we call it in
shm_destroy_orphaned().
In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix fb_set_var to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in fb_set_var() fails to allocate memory for
fb_videomode, later it may lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
The reason is that fb_info->var is being modified in fb_set_var(), and
then fb_videomode_to_var() is called. If it fails to add the mode to
fb_info->modelist, fb_set_var() returns error, but does not restore the
old value of fb_info->var. Restore fb_info->var on failure the same way
it is done earlier in the function.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix do_register_framebuffer to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in do_register_framebuffer() fails to allocate
memory for fb_videomode, it will later lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
Even though fbcon_init() checks beforehand if fb_match_mode() in
var_to_display() fails, it can not prevent the panic because fbcon_init()
does not return error code. Considering this and the comment in the code
about fb_match_mode() returning NULL - "This should not happen" - it is
better to prevent registering the fb_info if its mode was not set
successfully. Also move fb_add_videomode() closer to the beginning of
do_register_framebuffer() to avoid having to do the cleanup on fail.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds read in add_missing_indices
stbl is s8 but it must contain offsets into slot which can go from 0 to
127.
Added a bound check for that error and return -EIO if the check fails.
Also make jfs_readdir return with error if add_missing_indices returns
with an error.
In the Linux kernel, the following vulnerability has been resolved:
mm: fix uprobe pte be overwritten when expanding vma
Patch series "Fix uprobe pte be overwritten when expanding vma".
This patch (of 4):
We encountered a BUG alert triggered by Syzkaller as follows:
BUG: Bad rss-counter state mm:00000000b4a60fca type:MM_ANONPAGES val:1
And we can reproduce it with the following steps:
1. register uprobe on file at zero offset
2. mmap the file at zero offset:
addr1 = mmap(NULL, 2 * 4096, PROT_NONE, MAP_PRIVATE, fd, 0);
3. mremap part of vma1 to new vma2:
addr2 = mremap(addr1, 4096, 2 * 4096, MREMAP_MAYMOVE);
4. mremap back to orig addr1:
mremap(addr2, 4096, 4096, MREMAP_MAYMOVE | MREMAP_FIXED, addr1);
In step 3, the vma1 range [addr1, addr1 + 4096] will be remap to new vma2
with range [addr2, addr2 + 8192], and remap uprobe anon page from the vma1
to vma2, then unmap the vma1 range [addr1, addr1 + 4096].
In step 4, the vma2 range [addr2, addr2 + 4096] will be remap back to the
addr range [addr1, addr1 + 4096]. Since the addr range [addr1 + 4096,
addr1 + 8192] still maps the file, it will take vma_merge_new_range to
expand the range, and then do uprobe_mmap in vma_complete. Since the
merged vma pgoff is also zero offset, it will install uprobe anon page to
the merged vma. However, the upcomming move_page_tables step, which use
set_pte_at to remap the vma2 uprobe pte to the merged vma, will overwrite
the newly uprobe pte in the merged vma, and lead that pte to be orphan.
Since the uprobe pte will be remapped to the merged vma, we can remove the
unnecessary uprobe_mmap upon merged vma.
This problem was first found in linux-6.6.y and also exists in the
community syzkaller:
https://lore.kernel.org/all/000000000000ada39605a5e71711@google.com/T/
In the Linux kernel, the following vulnerability has been resolved:
smb: client: add NULL check in automount_fullpath
page is checked for null in __build_path_from_dentry_optional_prefix
when tcon->origin_fullpath is not set. However, the check is missing when
it is set.
Add a check to prevent a potential NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
fbcon: Make sure modelist not set on unregistered console
It looks like attempting to write to the "store_modes" sysfs node will
run afoul of unregistered consoles:
UBSAN: array-index-out-of-bounds in drivers/video/fbdev/core/fbcon.c:122:28
index -1 is out of range for type 'fb_info *[32]'
...
fbcon_info_from_console+0x192/0x1a0 drivers/video/fbdev/core/fbcon.c:122
fbcon_new_modelist+0xbf/0x2d0 drivers/video/fbdev/core/fbcon.c:3048
fb_new_modelist+0x328/0x440 drivers/video/fbdev/core/fbmem.c:673
store_modes+0x1c9/0x3e0 drivers/video/fbdev/core/fbsysfs.c:113
dev_attr_store+0x55/0x80 drivers/base/core.c:2439
static struct fb_info *fbcon_registered_fb[FB_MAX];
...
static signed char con2fb_map[MAX_NR_CONSOLES];
...
static struct fb_info *fbcon_info_from_console(int console)
...
return fbcon_registered_fb[con2fb_map[console]];
If con2fb_map contains a -1 things go wrong here. Instead, return NULL,
as callers of fbcon_info_from_console() are trying to compare against
existing "info" pointers, so error handling should kick in correctly.