Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 3.0.57  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: kernel/irq/irqdomain.c: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: mm/swapfile: add cond_resched() in get_swap_pages() The softlockup still occurs in get_swap_pages() under memory pressure. 64 CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram device is 50MB with same priority as si. Use the stress-ng tool to increase memory pressure, causing the system to oom frequently. The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens of thousands of times to find available space (extreme case: cond_resched() is not called in scan_swap_map_slots()). Let's add cond_resched() into get_swap_pages() when failed to find available space to avoid softlockup.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: btrfs: always report error in run_one_delayed_ref() Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but if end users hit such problem, there will be no chance that btrfs_debug() is enabled. This can lead to very little useful info for debugging. This patch will: - Add extra info for error reporting Including: * logical bytenr * num_bytes * type * action * ref_mod - Replace the btrfs_debug() with btrfs_err() - Move the error reporting into run_one_delayed_ref() This is to avoid use-after-free, the @node can be freed in the caller. This error should only be triggered at most once. As if run_one_delayed_ref() failed, we trigger the error message, then causing the call chain to error out: btrfs_run_delayed_refs() `- btrfs_run_delayed_refs() `- btrfs_run_delayed_refs_for_head() `- run_one_delayed_ref() And we will abort the current transaction in btrfs_run_delayed_refs(). If we have to run delayed refs for the abort transaction, run_one_delayed_ref() will just cleanup the refs and do nothing, thus no new error messages would be output.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Prevent race during ffs_ep0_queue_wait While performing fast composition switch, there is a possibility that the process of ffs_ep0_write/ffs_ep0_read get into a race condition due to ep0req being freed up from functionfs_unbind. Consider the scenario that the ffs_ep0_write calls the ffs_ep0_queue_wait by taking a lock &ffs->ev.waitq.lock. However, the functionfs_unbind isn't bounded so it can go ahead and mark the ep0req to NULL, and since there is no NULL check in ffs_ep0_queue_wait we will end up in use-after-free. Fix this by making a serialized execution between the two functions using a mutex_lock(ffs->mutex).
CVSS Score
7.8
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: dmaengine: imx-sdma: Fix a possible memory leak in sdma_transfer_init If the function sdma_load_context() fails, the sdma_desc will be freed, but the allocated desc->bd is forgot to be freed. We already met the sdma_load_context() failure case and the log as below: [ 450.699064] imx-sdma 30bd0000.dma-controller: Timeout waiting for CH0 ready ... In this case, the desc->bd will not be freed without this change.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Add u64 casts to avoid overflowing The fields of the _CPC object are unsigned 32-bits values. To avoid overflows while using _CPC's values, add 'u64' casts.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: w1: fix WARNING after calling w1_process() I got the following WARNING message while removing driver(ds2482): ------------[ cut here ]------------ do not call blocking ops when !TASK_RUNNING; state=1 set at [<000000002d50bfb6>] w1_process+0x9e/0x1d0 [wire] WARNING: CPU: 0 PID: 262 at kernel/sched/core.c:9817 __might_sleep+0x98/0xa0 CPU: 0 PID: 262 Comm: w1_bus_master1 Tainted: G N 6.1.0-rc3+ #307 RIP: 0010:__might_sleep+0x98/0xa0 Call Trace: exit_signals+0x6c/0x550 do_exit+0x2b4/0x17e0 kthread_exit+0x52/0x60 kthread+0x16d/0x1e0 ret_from_fork+0x1f/0x30 The state of task is set to TASK_INTERRUPTIBLE in loop in w1_process(), set it to TASK_RUNNING when it breaks out of the loop to avoid the warning.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on i_extra_isize in is_alive() syzbot found a f2fs bug: BUG: KASAN: slab-out-of-bounds in data_blkaddr fs/f2fs/f2fs.h:2891 [inline] BUG: KASAN: slab-out-of-bounds in is_alive fs/f2fs/gc.c:1117 [inline] BUG: KASAN: slab-out-of-bounds in gc_data_segment fs/f2fs/gc.c:1520 [inline] BUG: KASAN: slab-out-of-bounds in do_garbage_collect+0x386a/0x3df0 fs/f2fs/gc.c:1734 Read of size 4 at addr ffff888076557568 by task kworker/u4:3/52 CPU: 1 PID: 52 Comm: kworker/u4:3 Not tainted 6.1.0-rc4-syzkaller-00362-gfef7fd48922d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: writeback wb_workfn (flush-7:0) Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x15e/0x45d mm/kasan/report.c:395 kasan_report+0xbb/0x1f0 mm/kasan/report.c:495 data_blkaddr fs/f2fs/f2fs.h:2891 [inline] is_alive fs/f2fs/gc.c:1117 [inline] gc_data_segment fs/f2fs/gc.c:1520 [inline] do_garbage_collect+0x386a/0x3df0 fs/f2fs/gc.c:1734 f2fs_gc+0x88c/0x20a0 fs/f2fs/gc.c:1831 f2fs_balance_fs+0x544/0x6b0 fs/f2fs/segment.c:410 f2fs_write_inode+0x57e/0xe20 fs/f2fs/inode.c:753 write_inode fs/fs-writeback.c:1440 [inline] __writeback_single_inode+0xcfc/0x1440 fs/fs-writeback.c:1652 writeback_sb_inodes+0x54d/0xf90 fs/fs-writeback.c:1870 wb_writeback+0x2c5/0xd70 fs/fs-writeback.c:2044 wb_do_writeback fs/fs-writeback.c:2187 [inline] wb_workfn+0x2dc/0x12f0 fs/fs-writeback.c:2227 process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 The root cause is that we forgot to do sanity check on .i_extra_isize in below path, result in accessing invalid address later, fix it. - gc_data_segment - is_alive - data_blkaddr - offset_in_addr
CVSS Score
7.1
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: gfs2: Always check inode size of inline inodes Check if the inode size of stuffed (inline) inodes is within the allowed range when reading inodes from disk (gfs2_dinode_in()). This prevents us from on-disk corruption. The two checks in stuffed_readpage() and gfs2_unstuffer_page() that just truncate inline data to the maximum allowed size don't actually make sense, and they can be removed now as well.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-03-27
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Check the count value of channel spec to prevent out-of-bounds reads This patch fixes slab-out-of-bounds reads in brcmfmac that occur in brcmf_construct_chaninfo() and brcmf_enable_bw40_2g() when the count value of channel specifications provided by the device is greater than the length of 'list->element[]', decided by the size of the 'list' allocated with kzalloc(). The patch adds checks that make the functions free the buffer and return -EINVAL if that is the case. Note that the negative return is handled by the caller, brcmf_setup_wiphybands() or brcmf_cfg80211_attach(). Found by a modified version of syzkaller. Crash Report from brcmf_construct_chaninfo(): ================================================================== BUG: KASAN: slab-out-of-bounds in brcmf_setup_wiphybands+0x1238/0x1430 Read of size 4 at addr ffff888115f24600 by task kworker/0:2/1896 CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d print_address_description.constprop.0.cold+0x93/0x334 kasan_report.cold+0x83/0xdf brcmf_setup_wiphybands+0x1238/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 Allocated by task 1896: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 kmem_cache_alloc_trace+0x19e/0x330 brcmf_setup_wiphybands+0x290/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888115f24000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 1536 bytes inside of 2048-byte region [ffff888115f24000, ffff888115f24800) Memory state around the buggy address: ffff888115f24500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888115f24580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff888115f24600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888115f24680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888115f24700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Crash Report from brcmf_enable_bw40_2g(): ========== ---truncated---
CVSS Score
7.1
EPSS Score
0.0
Published
2025-03-27


Contact Us

Shodan ® - All rights reserved