In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix memory leak in query_regdb_file()
In the function query_regdb_file() the alpha2 parameter is duplicated
using kmemdup() and subsequently freed in regdb_fw_cb(). However,
request_firmware_nowait() can fail without calling regdb_fw_cb() and
thus leak memory.
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
Change num_ghes from int to unsigned int, preventing an overflow
and causing subsequent vmalloc() to fail.
The overflow happens in ghes_estatus_pool_init() when calculating
len during execution of the statement below as both multiplication
operands here are signed int:
len += (num_ghes * GHES_ESOURCE_PREALLOC_MAX_SIZE);
The following call trace is observed because of this bug:
[ 9.317108] swapper/0: vmalloc error: size 18446744071562596352, exceeds total pages, mode:0xcc0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0-1
[ 9.317131] Call Trace:
[ 9.317134] <TASK>
[ 9.317137] dump_stack_lvl+0x49/0x5f
[ 9.317145] dump_stack+0x10/0x12
[ 9.317146] warn_alloc.cold+0x7b/0xdf
[ 9.317150] ? __device_attach+0x16a/0x1b0
[ 9.317155] __vmalloc_node_range+0x702/0x740
[ 9.317160] ? device_add+0x17f/0x920
[ 9.317164] ? dev_set_name+0x53/0x70
[ 9.317166] ? platform_device_add+0xf9/0x240
[ 9.317168] __vmalloc_node+0x49/0x50
[ 9.317170] ? ghes_estatus_pool_init+0x43/0xa0
[ 9.317176] vmalloc+0x21/0x30
[ 9.317177] ghes_estatus_pool_init+0x43/0xa0
[ 9.317179] acpi_hest_init+0x129/0x19c
[ 9.317185] acpi_init+0x434/0x4a4
[ 9.317188] ? acpi_sleep_proc_init+0x2a/0x2a
[ 9.317190] do_one_initcall+0x48/0x200
[ 9.317195] kernel_init_freeable+0x221/0x284
[ 9.317200] ? rest_init+0xe0/0xe0
[ 9.317204] kernel_init+0x1a/0x130
[ 9.317205] ret_from_fork+0x22/0x30
[ 9.317208] </TASK>
[ rjw: Subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved:
media: meson: vdec: fix possible refcount leak in vdec_probe()
v4l2_device_unregister need to be called to put the refcount got by
v4l2_device_register when vdec_probe fails or vdec_remove is called.
In the Linux kernel, the following vulnerability has been resolved:
arm64: entry: avoid kprobe recursion
The cortex_a76_erratum_1463225_debug_handler() function is called when
handling debug exceptions (and synchronous exceptions from BRK
instructions), and so is called when a probed function executes. If the
compiler does not inline cortex_a76_erratum_1463225_debug_handler(), it
can be probed.
If cortex_a76_erratum_1463225_debug_handler() is probed, any debug
exception or software breakpoint exception will result in recursive
exceptions leading to a stack overflow. This can be triggered with the
ftrace multiple_probes selftest, and as per the example splat below.
This is a regression caused by commit:
6459b8469753e9fe ("arm64: entry: consolidate Cortex-A76 erratum 1463225 workaround")
... which removed the NOKPROBE_SYMBOL() annotation associated with the
function.
My intent was that cortex_a76_erratum_1463225_debug_handler() would be
inlined into its caller, el1_dbg(), which is marked noinstr and cannot
be probed. Mark cortex_a76_erratum_1463225_debug_handler() as
__always_inline to ensure this.
Example splat prior to this patch (with recursive entries elided):
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| # echo p do_el0_svc >> /sys/kernel/debug/tracing/kprobe_events
| # echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable
| Insufficient stack space to handle exception!
| ESR: 0x0000000096000047 -- DABT (current EL)
| FAR: 0xffff800009cefff0
| Task stack: [0xffff800009cf0000..0xffff800009cf4000]
| IRQ stack: [0xffff800008000000..0xffff800008004000]
| Overflow stack: [0xffff00007fbc00f0..0xffff00007fbc10f0]
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : arm64_enter_el1_dbg+0x4/0x20
| lr : el1_dbg+0x24/0x5c
| sp : ffff800009cf0000
| x29: ffff800009cf0000 x28: ffff000002c74740 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 00000000604003c5 x22: ffff80000801745c x21: 0000aaaac95ac068
| x20: 00000000f2000004 x19: ffff800009cf0040 x18: 0000000000000000
| x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
| x11: 0000000000000010 x10: ffff800008c87190 x9 : ffff800008ca00d0
| x8 : 000000000000003c x7 : 0000000000000000 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000043a4
| x2 : 00000000f2000004 x1 : 00000000f2000004 x0 : ffff800009cf0040
| Kernel panic - not syncing: kernel stack overflow
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xe4/0x104
| show_stack+0x18/0x4c
| dump_stack_lvl+0x64/0x7c
| dump_stack+0x18/0x38
| panic+0x14c/0x338
| test_taint+0x0/0x2c
| panic_bad_stack+0x104/0x118
| handle_bad_stack+0x34/0x48
| __bad_stack+0x78/0x7c
| arm64_enter_el1_dbg+0x4/0x20
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| do_el0_svc+0x0/0x28
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x18c/0x190
| Kernel Offset: disabled
| CPU features: 0x0080,00005021,19001080
| Memory Limit: none
| ---[ end Kernel panic - not syncing: kernel stack overflow ]---
With this patch, cortex_a76_erratum_1463225_debug_handler() is inlined
into el1_dbg(), and el1_dbg() cannot be probed:
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| sh: write error: No such file or directory
| # grep -w cortex_a76_errat
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Check for NULL cpu_buffer in ring_buffer_wake_waiters()
On some machines the number of listed CPUs may be bigger than the actual
CPUs that exist. The tracing subsystem allocates a per_cpu directory with
access to the per CPU ring buffer via a cpuX file. But to save space, the
ring buffer will only allocate buffers for online CPUs, even though the
CPU array will be as big as the nr_cpu_ids.
With the addition of waking waiters on the ring buffer when closing the
file, the ring_buffer_wake_waiters() now needs to make sure that the
buffer is allocated (with the irq_work allocated with it) before trying to
wake waiters, as it will cause a NULL pointer dereference.
While debugging this, I added a NULL check for the buffer itself (which is
OK to do), and also NULL pointer checks against buffer->buffers (which is
not fine, and will WARN) as well as making sure the CPU number passed in
is within the nr_cpu_ids (which is also not fine if it isn't).
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix wrong reg type conversion in release_reference()
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: fix possible memory leak in mousevsc_probe()
If hid_add_device() returns error, it should call hid_destroy_device()
to free hid_dev which is allocated in hid_allocate_device().
In the Linux kernel, the following vulnerability has been resolved:
bpftool: Fix NULL pointer dereference when pin {PROG, MAP, LINK} without FILE
When using bpftool to pin {PROG, MAP, LINK} without FILE,
segmentation fault will occur. The reson is that the lack
of FILE will cause strlen to trigger NULL pointer dereference.
The corresponding stacktrace is shown below:
do_pin
do_pin_any
do_pin_fd
mount_bpffs_for_pin
strlen(name) <- NULL pointer dereference
Fix it by adding validation to the common process.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix general-protection-fault in ieee80211_subif_start_xmit()
When device is running and the interface status is changed, the gpf issue
is triggered. The problem triggering process is as follows:
Thread A: Thread B
ieee80211_runtime_change_iftype() process_one_work()
... ...
ieee80211_do_stop() ...
... ...
sdata->bss = NULL ...
... ieee80211_subif_start_xmit()
ieee80211_multicast_to_unicast
//!sdata->bss->multicast_to_unicast
cause gpf issue
When the interface status is changed, the sending queue continues to send
packets. After the bss is set to NULL, the bss is accessed. As a result,
this causes a general-protection-fault issue.
The following is the stack information:
general protection fault, probably for non-canonical address
0xdffffc000000002f: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000178-0x000000000000017f]
Workqueue: mld mld_ifc_work
RIP: 0010:ieee80211_subif_start_xmit+0x25b/0x1310
Call Trace:
<TASK>
dev_hard_start_xmit+0x1be/0x990
__dev_queue_xmit+0x2c9a/0x3b60
ip6_finish_output2+0xf92/0x1520
ip6_finish_output+0x6af/0x11e0
ip6_output+0x1ed/0x540
mld_sendpack+0xa09/0xe70
mld_ifc_work+0x71c/0xdb0
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK>