In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Do _all_ initialization before exposing /dev/kvm to userspace
Call kvm_init() only after _all_ setup is complete, as kvm_init() exposes
/dev/kvm to userspace and thus allows userspace to create VMs (and call
other ioctls). E.g. KVM will encounter a NULL pointer when attempting to
add a vCPU to the per-CPU loaded_vmcss_on_cpu list if userspace is able to
create a VM before vmx_init() configures said list.
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP
CPU: 6 PID: 1143 Comm: stable Not tainted 6.0.0-rc7+ #988
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:vmx_vcpu_load_vmcs+0x68/0x230 [kvm_intel]
<TASK>
vmx_vcpu_load+0x16/0x60 [kvm_intel]
kvm_arch_vcpu_load+0x32/0x1f0 [kvm]
vcpu_load+0x2f/0x40 [kvm]
kvm_arch_vcpu_create+0x231/0x310 [kvm]
kvm_vm_ioctl+0x79f/0xe10 [kvm]
? handle_mm_fault+0xb1/0x220
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f5a6b05743b
</TASK>
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel(+) kvm irqbypass
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Check kzalloc() in lpfc_sli4_cgn_params_read()
If kzalloc() fails in lpfc_sli4_cgn_params_read(), then we rely on
lpfc_read_object()'s routine to NULL check pdata.
Currently, an early return error is thrown from lpfc_read_object() to
protect us from NULL ptr dereference, but the errno code is -ENODEV.
Change the errno code to a more appropriate -ENOMEM.
In the Linux kernel, the following vulnerability has been resolved:
codel: remove sch->q.qlen check before qdisc_tree_reduce_backlog()
After making all ->qlen_notify() callbacks idempotent, now it is safe to
remove the check of qlen!=0 from both fq_codel_dequeue() and
codel_qdisc_dequeue().
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in __ip_vs_cleanup_batch()
During the initialization of ip_vs_conn_net_init(), if file ip_vs_conn
or ip_vs_conn_sync fails to be created, the initialization is successful
by default. Therefore, the ip_vs_conn or ip_vs_conn_sync file doesn't
be found during the remove.
The following is the stack information:
name 'ip_vs_conn_sync'
WARNING: CPU: 3 PID: 9 at fs/proc/generic.c:712
remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
<TASK>
__ip_vs_cleanup_batch+0x7d/0x120
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free caused by l2cap_reassemble_sdu
Fix the race condition between the following two flows that run in
parallel:
1. l2cap_reassemble_sdu -> chan->ops->recv (l2cap_sock_recv_cb) ->
__sock_queue_rcv_skb.
2. bt_sock_recvmsg -> skb_recv_datagram, skb_free_datagram.
An SKB can be queued by the first flow and immediately dequeued and
freed by the second flow, therefore the callers of l2cap_reassemble_sdu
can't use the SKB after that function returns. However, some places
continue accessing struct l2cap_ctrl that resides in the SKB's CB for a
short time after l2cap_reassemble_sdu returns, leading to a
use-after-free condition (the stack trace is below, line numbers for
kernel 5.19.8).
Fix it by keeping a local copy of struct l2cap_ctrl.
BUG: KASAN: use-after-free in l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
Read of size 1 at addr ffff88812025f2f0 by task kworker/u17:3/43169
Workqueue: hci0 hci_rx_work [bluetooth]
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4))
print_report.cold (mm/kasan/report.c:314 mm/kasan/report.c:429)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx (net/bluetooth/l2cap_core.c:7236 net/bluetooth/l2cap_core.c:7271) bluetooth
ret_from_fork (arch/x86/entry/entry_64.S:306)
</TASK>
Allocated by task 43169:
kasan_save_stack (mm/kasan/common.c:39)
__kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
kmem_cache_alloc_node (mm/slab.h:750 mm/slub.c:3243 mm/slub.c:3293)
__alloc_skb (net/core/skbuff.c:414)
l2cap_recv_frag (./include/net/bluetooth/bluetooth.h:425 net/bluetooth/l2cap_core.c:8329) bluetooth
l2cap_recv_acldata (net/bluetooth/l2cap_core.c:8442) bluetooth
hci_rx_work (net/bluetooth/hci_core.c:3642 net/bluetooth/hci_core.c:3832) bluetooth
process_one_work (kernel/workqueue.c:2289)
worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2437)
kthread (kernel/kthread.c:376)
ret_from_fork (arch/x86/entry/entry_64.S:306)
Freed by task 27920:
kasan_save_stack (mm/kasan/common.c:39)
kasan_set_track (mm/kasan/common.c:45)
kasan_set_free_info (mm/kasan/generic.c:372)
____kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328)
slab_free_freelist_hook (mm/slub.c:1780)
kmem_cache_free (mm/slub.c:3536 mm/slub.c:3553)
skb_free_datagram (./include/net/sock.h:1578 ./include/net/sock.h:1639 net/core/datagram.c:323)
bt_sock_recvmsg (net/bluetooth/af_bluetooth.c:295) bluetooth
l2cap_sock_recvmsg (net/bluetooth/l2cap_sock.c:1212) bluetooth
sock_read_iter (net/socket.c:1087)
new_sync_read (./include/linux/fs.h:2052 fs/read_write.c:401)
vfs_read (fs/read_write.c:482)
ksys_read (fs/read_write.c:620)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix inode list leak during backref walking at resolve_indirect_refs()
During backref walking, at resolve_indirect_refs(), if we get an error
we jump to the 'out' label and call ulist_free() on the 'parents' ulist,
which frees all the elements in the ulist - however that does not free
any inode lists that may be attached to elements, through the 'aux' field
of a ulist node, so we end up leaking lists if we have any attached to
the unodes.
Fix this by calling free_leaf_list() instead of ulist_free() when we exit
from resolve_indirect_refs(). The static function free_leaf_list() is
moved up for this to be possible and it's slightly simplified by removing
unnecessary code.
In the Linux kernel, the following vulnerability has been resolved:
mISDN: fix possible memory leak in mISDN_register_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
add put_device() to give up the reference, so that the name can be
freed in kobject_cleanup() when the refcount is 0.
Set device class before put_device() to avoid null release() function
WARN message in device_release().
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in ip_vs_app_net_cleanup()
During the initialization of ip_vs_app_net_init(), if file ip_vs_app
fails to be created, the initialization is successful by default.
Therefore, the ip_vs_app file doesn't be found during the remove in
ip_vs_app_net_cleanup(). It will cause WRNING.
The following is the stack information:
name 'ip_vs_app'
WARNING: CPU: 1 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
<TASK>
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix WARNING in ip6_route_net_exit_late()
During the initialization of ip6_route_net_init_late(), if file
ipv6_route or rt6_stats fails to be created, the initialization is
successful by default. Therefore, the ipv6_route or rt6_stats file
doesn't be found during the remove in ip6_route_net_exit_late(). It
will cause WRNING.
The following is the stack information:
name 'rt6_stats'
WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
PKRU: 55555554
Call Trace:
<TASK>
ops_exit_list+0xb0/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
net: mdio: fix undefined behavior in bit shift for __mdiobus_register
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in drivers/net/phy/mdio_bus.c:586:27
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
__mdiobus_register+0x49d/0x4e0
fixed_mdio_bus_init+0xd8/0x12d
do_one_initcall+0x76/0x430
kernel_init_freeable+0x3b3/0x422
kernel_init+0x24/0x1e0
ret_from_fork+0x1f/0x30
</TASK>