Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.9.100  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: vsock: Do not allow binding to VMADDR_PORT_ANY It is possible for a vsock to autobind to VMADDR_PORT_ANY. This can cause a use-after-free when a connection is made to the bound socket. The socket returned by accept() also has port VMADDR_PORT_ANY but is not on the list of unbound sockets. Binding it will result in an extra refcount decrement similar to the one fixed in fcdd2242c023 (vsock: Keep the binding until socket destruction). Modify the check in __vsock_bind_connectible() to also prevent binding to VMADDR_PORT_ANY.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: eventpoll: Fix semi-unbounded recursion Ensure that epoll instances can never form a graph deeper than EP_MAX_NESTS+1 links. Currently, ep_loop_check_proc() ensures that the graph is loop-free and does some recursion depth checks, but those recursion depth checks don't limit the depth of the resulting tree for two reasons: - They don't look upwards in the tree. - If there are multiple downwards paths of different lengths, only one of the paths is actually considered for the depth check since commit 28d82dc1c4ed ("epoll: limit paths"). Essentially, the current recursion depth check in ep_loop_check_proc() just serves to prevent it from recursing too deeply while checking for loops. A more thorough check is done in reverse_path_check() after the new graph edge has already been created; this checks, among other things, that no paths going upwards from any non-epoll file with a length of more than 5 edges exist. However, this check does not apply to non-epoll files. As a result, it is possible to recurse to a depth of at least roughly 500, tested on v6.15. (I am unsure if deeper recursion is possible; and this may have changed with commit 8c44dac8add7 ("eventpoll: Fix priority inversion problem").) To fix it: 1. In ep_loop_check_proc(), note the subtree depth of each visited node, and use subtree depths for the total depth calculation even when a subtree has already been visited. 2. Add ep_get_upwards_depth_proc() for similarly determining the maximum depth of an upwards walk. 3. In ep_loop_check(), use these values to limit the total path length between epoll nodes to EP_MAX_NESTS edges.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: staging: fbtft: fix potential memory leak in fbtft_framebuffer_alloc() In the error paths after fb_info structure is successfully allocated, the memory allocated in fb_deferred_io_init() for info->pagerefs is not freed. Fix that by adding the cleanup function on the error path.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: iwlwifi: Add missing check for alloc_ordered_workqueue Add check for the return value of alloc_ordered_workqueue since it may return NULL pointer.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: Kill URBs before clearing tx status queue In rtl8187_stop() move the call of usb_kill_anchored_urbs() before clearing b_tx_status.queue. This change prevents callbacks from using already freed skb due to anchor was not killed before freeing such skb. BUG: kernel NULL pointer dereference, address: 0000000000000080 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Not tainted 6.15.0 #8 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 RIP: 0010:ieee80211_tx_status_irqsafe+0x21/0xc0 [mac80211] Call Trace: <IRQ> rtl8187_tx_cb+0x116/0x150 [rtl8187] __usb_hcd_giveback_urb+0x9d/0x120 usb_giveback_urb_bh+0xbb/0x140 process_one_work+0x19b/0x3c0 bh_worker+0x1a7/0x210 tasklet_action+0x10/0x30 handle_softirqs+0xf0/0x340 __irq_exit_rcu+0xcd/0xf0 common_interrupt+0x85/0xa0 </IRQ> Tested on RTL8187BvE device. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: padata: Fix pd UAF once and for all There is a race condition/UAF in padata_reorder that goes back to the initial commit. A reference count is taken at the start of the process in padata_do_parallel, and released at the end in padata_serial_worker. This reference count is (and only is) required for padata_replace to function correctly. If padata_replace is never called then there is no issue. In the function padata_reorder which serves as the core of padata, as soon as padata is added to queue->serial.list, and the associated spin lock released, that padata may be processed and the reference count on pd would go away. Fix this by getting the next padata before the squeue->serial lock is released. In order to make this possible, simplify padata_reorder by only calling it once the next padata arrives.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: ipv6: reject malicious packets in ipv6_gso_segment() syzbot was able to craft a packet with very long IPv6 extension headers leading to an overflow of skb->transport_header. This 16bit field has a limited range. Add skb_reset_transport_header_careful() helper and use it from ipv6_gso_segment() WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline] WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Modules linked in: CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline] RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Call Trace: <TASK> skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110 skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 __skb_gso_segment+0x342/0x510 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950 validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000 sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329 __dev_xmit_skb net/core/dev.c:4102 [inline] __dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: pptp: ensure minimal skb length in pptp_xmit() Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data on ppp_sync_txmung") fixed ppp_sync_txmunge() We need a similar fix in pptp_xmit(), otherwise we might read uninit data as reported by syzbot. BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline] ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314 pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148 __release_sock+0x1d3/0x330 net/core/sock.c:3213 release_sock+0x6b/0x270 net/core/sock.c:3767 pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:727 ____sys_sendmsg+0x893/0xd80 net/socket.c:2566 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2620 __sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: powerpc/eeh: Make EEH driver device hotplug safe Multiple race conditions existed between the PCIe hotplug driver and the EEH driver, leading to a variety of kernel oopses of the same general nature: <pcie device unplug> <eeh driver trigger> <hotplug removal trigger> <pcie tree reconfiguration> <eeh recovery next step> <oops in EEH driver bus iteration loop> A second class of oops is also seen when the underlying bus disappears during device recovery. Refactor the EEH module to be PCI rescan and remove safe. Also clean up a few minor formatting / readability issues.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid panic in f2fs_evict_inode As syzbot [1] reported as below: R10: 0000000000000100 R11: 0000000000000206 R12: 00007ffe17473450 R13: 00007f28b1c10854 R14: 000000000000dae5 R15: 00007ffe17474520 </TASK> ---[ end trace 0000000000000000 ]--- ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 Read of size 8 at addr ffff88812d962278 by task syz-executor/564 CPU: 1 PID: 564 Comm: syz-executor Tainted: G W 6.1.129-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Call Trace: <TASK> __dump_stack+0x21/0x24 lib/dump_stack.c:88 dump_stack_lvl+0xee/0x158 lib/dump_stack.c:106 print_address_description+0x71/0x210 mm/kasan/report.c:316 print_report+0x4a/0x60 mm/kasan/report.c:427 kasan_report+0x122/0x150 mm/kasan/report.c:531 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:351 __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 __list_del_entry include/linux/list.h:134 [inline] list_del_init include/linux/list.h:206 [inline] f2fs_inode_synced+0xf7/0x2e0 fs/f2fs/super.c:1531 f2fs_update_inode+0x74/0x1c40 fs/f2fs/inode.c:585 f2fs_update_inode_page+0x137/0x170 fs/f2fs/inode.c:703 f2fs_write_inode+0x4ec/0x770 fs/f2fs/inode.c:731 write_inode fs/fs-writeback.c:1460 [inline] __writeback_single_inode+0x4a0/0xab0 fs/fs-writeback.c:1677 writeback_single_inode+0x221/0x8b0 fs/fs-writeback.c:1733 sync_inode_metadata+0xb6/0x110 fs/fs-writeback.c:2789 f2fs_sync_inode_meta+0x16d/0x2a0 fs/f2fs/checkpoint.c:1159 block_operations fs/f2fs/checkpoint.c:1269 [inline] f2fs_write_checkpoint+0xca3/0x2100 fs/f2fs/checkpoint.c:1658 kill_f2fs_super+0x231/0x390 fs/f2fs/super.c:4668 deactivate_locked_super+0x98/0x100 fs/super.c:332 deactivate_super+0xaf/0xe0 fs/super.c:363 cleanup_mnt+0x45f/0x4e0 fs/namespace.c:1186 __cleanup_mnt+0x19/0x20 fs/namespace.c:1193 task_work_run+0x1c6/0x230 kernel/task_work.c:203 exit_task_work include/linux/task_work.h:39 [inline] do_exit+0x9fb/0x2410 kernel/exit.c:871 do_group_exit+0x210/0x2d0 kernel/exit.c:1021 __do_sys_exit_group kernel/exit.c:1032 [inline] __se_sys_exit_group kernel/exit.c:1030 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1030 x64_sys_call+0x7b4/0x9a0 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4c/0xa0 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x68/0xd2 RIP: 0033:0x7f28b1b8e169 Code: Unable to access opcode bytes at 0x7f28b1b8e13f. RSP: 002b:00007ffe174710a8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 00007f28b1c10879 RCX: 00007f28b1b8e169 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000001 RBP: 0000000000000002 R08: 00007ffe1746ee47 R09: 00007ffe17472360 R10: 0000000000000009 R11: 0000000000000246 R12: 00007ffe17472360 R13: 00007f28b1c10854 R14: 000000000000dae5 R15: 00007ffe17474520 </TASK> Allocated by task 569: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_alloc_info+0x25/0x30 mm/kasan/generic.c:505 __kasan_slab_alloc+0x72/0x80 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:201 [inline] slab_post_alloc_hook+0x4f/0x2c0 mm/slab.h:737 slab_alloc_node mm/slub.c:3398 [inline] slab_alloc mm/slub.c:3406 [inline] __kmem_cache_alloc_lru mm/slub.c:3413 [inline] kmem_cache_alloc_lru+0x104/0x220 mm/slub.c:3429 alloc_inode_sb include/linux/fs.h:3245 [inline] f2fs_alloc_inode+0x2d/0x340 fs/f2fs/super.c:1419 alloc_inode fs/inode.c:261 [inline] iget_locked+0x186/0x880 fs/inode.c:1373 f2fs_iget+0x55/0x4c60 fs/f2fs/inode.c:483 f2fs_lookup+0x366/0xab0 fs/f2fs/namei.c:487 __lookup_slow+0x2a3/0x3d0 fs/namei.c:1690 lookup_slow+0x57/0x70 fs/namei.c:1707 walk_component+0x2e6/0x410 fs/namei ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19


Contact Us

Shodan ® - All rights reserved