In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming]
In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: Fix MAC comparison to be constant-time
To prevent timing attacks, MACs need to be compared in constant time.
Use the appropriate helper function for this.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix a Null pointer dereference vulnerability
[Why]
A null pointer dereference vulnerability exists in the AMD display driver's
(DC module) cleanup function dc_destruct().
When display control context (dc->ctx) construction fails
(due to memory allocation failure), this pointer remains NULL.
During subsequent error handling when dc_destruct() is called,
there's no NULL check before dereferencing the perf_trace member
(dc->ctx->perf_trace), causing a kernel null pointer dereference crash.
[How]
Check if dc->ctx is non-NULL before dereferencing.
(Updated commit text and removed unnecessary error message)
(cherry picked from commit 9dd8e2ba268c636c240a918e0a31e6feaee19404)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Destroy KFD debugfs after destroy KFD wq
Since KFD proc content was moved to kernel debugfs, we can't destroy KFD
debugfs before kfd_process_destroy_wq. Move kfd_process_destroy_wq prior
to kfd_debugfs_fini to fix a kernel NULL pointer problem. It happens
when /sys/kernel/debug/kfd was already destroyed in kfd_debugfs_fini but
kfd_process_destroy_wq calls kfd_debugfs_remove_process. This line
debugfs_remove_recursive(entry->proc_dentry);
tries to remove /sys/kernel/debug/kfd/proc/<pid> while
/sys/kernel/debug/kfd is already gone. It hangs the kernel by kernel
NULL pointer.
(cherry picked from commit 0333052d90683d88531558dcfdbf2525cc37c233)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: check if hubbub is NULL in debugfs/amdgpu_dm_capabilities
HUBBUB structure is not initialized on DCE hardware, so check if it is NULL
to avoid null dereference while accessing amdgpu_dm_capabilities file in
debugfs.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Avoid a NULL pointer dereference
[WHY]
Although unlikely drm_atomic_get_new_connector_state() or
drm_atomic_get_old_connector_state() can return NULL.
[HOW]
Check returns before dereference.
(cherry picked from commit 1e5e8d672fec9f2ab352be121be971877bff2af9)
In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a race when updating an existing write
After nfs_lock_and_join_requests() tests for whether the request is
still attached to the mapping, nothing prevents a call to
nfs_inode_remove_request() from succeeding until we actually lock the
page group.
The reason is that whoever called nfs_inode_remove_request() doesn't
necessarily have a lock on the page group head.
So in order to avoid races, let's take the page group lock earlier in
nfs_lock_and_join_requests(), and hold it across the removal of the
request in nfs_inode_remove_request().
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer.
In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl726: Prevent invalid irq number
The reproducer passed in an irq number(0x80008000) that was too large,
which triggered the oob.
Added an interrupt number check to prevent users from passing in an irq
number that was too large.
If `it->options[1]` is 31, then `1 << it->options[1]` is still invalid
because it shifts a 1-bit into the sign bit (which is UB in C).
Possible solutions include reducing the upper bound on the
`it->options[1]` value to 30 or lower, or using `1U << it->options[1]`.
The old code would just not attempt to request the IRQ if the
`options[1]` value were invalid. And it would still configure the
device without interrupts even if the call to `request_irq` returned an
error. So it would be better to combine this test with the test below.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Make insn_rw_emulate_bits() do insn->n samples
The `insn_rw_emulate_bits()` function is used as a default handler for
`INSN_READ` instructions for subdevices that have a handler for
`INSN_BITS` but not for `INSN_READ`. Similarly, it is used as a default
handler for `INSN_WRITE` instructions for subdevices that have a handler
for `INSN_BITS` but not for `INSN_WRITE`. It works by emulating the
`INSN_READ` or `INSN_WRITE` instruction handling with a constructed
`INSN_BITS` instruction. However, `INSN_READ` and `INSN_WRITE`
instructions are supposed to be able read or write multiple samples,
indicated by the `insn->n` value, but `insn_rw_emulate_bits()` currently
only handles a single sample. For `INSN_READ`, the comedi core will
copy `insn->n` samples back to user-space. (That triggered KASAN
kernel-infoleak errors when `insn->n` was greater than 1, but that is
being fixed more generally elsewhere in the comedi core.)
Make `insn_rw_emulate_bits()` either handle `insn->n` samples, or return
an error, to conform to the general expectation for `INSN_READ` and
`INSN_WRITE` handlers.