In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix lockdep assertion on sync reset unload event
Fix lockdep assertion triggered during sync reset unload event. When the
sync reset flow is initiated using the devlink reload fw_activate
option, the PF already holds the devlink lock while handling unload
event. In this case, delegate sync reset unload event handling back to
the devlink callback process to avoid double-locking and resolve the
lockdep warning.
Kernel log:
WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40
[...]
Call Trace:
<TASK>
mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core]
mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core]
process_one_work+0x222/0x640
worker_thread+0x199/0x350
kthread+0x10b/0x230
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x8e/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_action_get_shared_stc_nic error flow
When an invalid stc_type is provided, the function allocates memory for
shared_stc but jumps to unlock_and_out without freeing it, causing a
memory leak.
Fix by jumping to free_shared_stc label instead to ensure proper cleanup.
In the Linux kernel, the following vulnerability has been resolved:
efi: stmm: Fix incorrect buffer allocation method
The communication buffer allocated by setup_mm_hdr() is later on passed
to tee_shm_register_kernel_buf(). The latter expects those buffers to be
contiguous pages, but setup_mm_hdr() just uses kmalloc(). That can cause
various corruptions or BUGs, specifically since commit 9aec2fb0fd5e
("slab: allocate frozen pages"), though it was broken before as well.
Fix this by using alloc_pages_exact() instead of kmalloc().
A Cross Site Scripting vulnerability in JeeWMS v.3.7 and before allows a remote attacker to obtain sensitive information via the logController.do component
A stack-based buffer overflow can be remotely triggered when formatting an error message in the Control-M/Agent when SSL/TLS communication is configured.
The issue occurs in the following cases:
* Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n";
* Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n".
A path traversal in the Control-M/Agent can lead to a local privilege escalation when an attacker has access to the system running the Agent. This vulnerability impacts the out-of-support Control-M/Agent versions 9.0.18 to 9.0.20 and potentially earlier unsupported versions. This vulnerability was fixed in 9.0.20.100 and above.
A buffer overflow in the Control-M/Agent can lead to a local privilege escalation when an attacker has access to the system running the Agent.
This vulnerability impacts the out-of-support Control-M/Agent versions 9.0.18 to 9.0.20 and potentially earlier unsupported versions.
If the Access Control List is enforced by the Control-M/Agent and the C router is in use (default in Out-of-support Control-M/Agent versions 9.0.18 to 9.0.20 and potentially earlier unsupported versions; non-default but configurable using the JAVA_AR setting in newer versions), the verification stops at the first NULL byte encountered in the email address referenced in the client certificate. An attacker could bypass configured ACLs by using a specially crafted certificate.
Out-of-support Control-M/Agent versions 9.0.18 to 9.0.20 (and potentially earlier unsupported versions) that are configured to use the non-default Blowfish cryptography algorithm use a hardcoded key. An attacker with access to network traffic and to this key could decrypt network traffic between the Control-M/Agent and Server.