In the Linux kernel, the following vulnerability has been resolved:
recordmcount: Fix memory leaks in the uwrite function
Common realloc mistake: 'file_append' nulled but not freed upon failure
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free
Fix potential use-after-free in l2cap_le_command_rej.
In the Linux kernel, the following vulnerability has been resolved:
rbd: avoid use-after-free in do_rbd_add() when rbd_dev_create() fails
If getting an ID or setting up a work queue in rbd_dev_create() fails,
use-after-free on rbd_dev->rbd_client, rbd_dev->spec and rbd_dev->opts
is triggered in do_rbd_add(). The root cause is that the ownership of
these structures is transfered to rbd_dev prematurely and they all end
up getting freed when rbd_dev_create() calls rbd_dev_free() prior to
returning to do_rbd_add().
Found by Linux Verification Center (linuxtesting.org) with SVACE, an
incomplete patch submitted by Natalia Petrova <n.petrova@fintech.ru>.
In the Linux kernel, the following vulnerability has been resolved:
net: fec: Better handle pm_runtime_get() failing in .remove()
In the (unlikely) event that pm_runtime_get() (disguised as
pm_runtime_resume_and_get()) fails, the remove callback returned an
error early. The problem with this is that the driver core ignores the
error value and continues removing the device. This results in a
resource leak. Worse the devm allocated resources are freed and so if a
callback of the driver is called later the register mapping is already
gone which probably results in a crash.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Fix integer overflow in radeon_cs_parser_init
The type of size is unsigned, if size is 0x40000000, there will be an
integer overflow, size will be zero after size *= sizeof(uint32_t),
will cause uninitialized memory to be referenced later
In the Linux kernel, the following vulnerability has been resolved:
power: supply: axp288_fuel_gauge: Fix external_power_changed race
fuel_gauge_external_power_changed() dereferences info->bat,
which gets sets in axp288_fuel_gauge_probe() like this:
info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg);
As soon as devm_power_supply_register() has called device_add()
the external_power_changed callback can get called. So there is a window
where fuel_gauge_external_power_changed() may get called while
info->bat has not been set yet leading to a NULL pointer dereference.
Fixing this is easy. The external_power_changed callback gets passed
the power_supply which will eventually get stored in info->bat,
so fuel_gauge_external_power_changed() can simply directly use
the passed in psy argument which is always valid.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput
During unmount process of nilfs2, nothing holds nilfs_root structure after
nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously,
nilfs_evict_inode() could cause use-after-free read for nilfs_root if
inodes are left in "garbage_list" and released by nilfs_dispose_list at
the end of nilfs_detach_log_writer(), and this bug was fixed by commit
9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in
nilfs_evict_inode()").
However, it turned out that there is another possibility of UAF in the
call path where mark_inode_dirty_sync() is called from iput():
nilfs_detach_log_writer()
nilfs_dispose_list()
iput()
mark_inode_dirty_sync()
__mark_inode_dirty()
nilfs_dirty_inode()
__nilfs_mark_inode_dirty()
nilfs_load_inode_block() --> causes UAF of nilfs_root struct
This can happen after commit 0ae45f63d4ef ("vfs: add support for a
lazytime mount option"), which changed iput() to call
mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME
flag and i_nlink is non-zero.
This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty
data after degenerating to read-only") when using the syzbot reproducer,
but the issue has potentially existed before.
Fix this issue by adding a "purging flag" to the nilfs structure, setting
that flag while disposing the "garbage_list" and checking it in
__nilfs_mark_inode_dirty().
Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root
in nilfs_evict_inode()"), this patch does not rely on ns_writer to
determine whether to skip operations, so as not to break recovery on
mount. The nilfs_salvage_orphan_logs routine dirties the buffer of
salvaged data before attaching the log writer, so changing
__nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL
will cause recovery write to fail. The purpose of using the cleanup-only
flag is to allow for narrowing of such conditions.
In the Linux kernel, the following vulnerability has been resolved:
net: hns: fix possible memory leak in hnae_ae_register()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff00c01aba2100 (size 128):
comm "systemd-udevd", pid 1259, jiffies 4294903284 (age 294.152s)
hex dump (first 32 bytes):
68 6e 61 65 30 00 00 00 18 21 ba 1a c0 00 ff ff hnae0....!......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000034783f26>] slab_post_alloc_hook+0xa0/0x3e0
[<00000000748188f2>] __kmem_cache_alloc_node+0x164/0x2b0
[<00000000ab0743e8>] __kmalloc_node_track_caller+0x6c/0x390
[<000000006c0ffb13>] kvasprintf+0x8c/0x118
[<00000000fa27bfe1>] kvasprintf_const+0x60/0xc8
[<0000000083e10ed7>] kobject_set_name_vargs+0x3c/0xc0
[<000000000b87affc>] dev_set_name+0x7c/0xa0
[<000000003fd8fe26>] hnae_ae_register+0xcc/0x190 [hnae]
[<00000000fe97edc9>] hns_dsaf_ae_init+0x9c/0x108 [hns_dsaf]
[<00000000c36ff1eb>] hns_dsaf_probe+0x548/0x748 [hns_dsaf]