Vulnerabilities
Vulnerable Software
Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Handle kvm_arm_init failure correctly in finalize_pkvm Currently there is no synchronisation between finalize_pkvm() and kvm_arm_init() initcalls. The finalize_pkvm() proceeds happily even if kvm_arm_init() fails resulting in the following warning on all the CPUs and eventually a HYP panic: | kvm [1]: IPA Size Limit: 48 bits | kvm [1]: Failed to init hyp memory protection | kvm [1]: error initializing Hyp mode: -22 | | <snip> | | WARNING: CPU: 0 PID: 0 at arch/arm64/kvm/pkvm.c:226 _kvm_host_prot_finalize+0x30/0x50 | Modules linked in: | CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0 #237 | Hardware name: FVP Base RevC (DT) | pstate: 634020c5 (nZCv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--) | pc : _kvm_host_prot_finalize+0x30/0x50 | lr : __flush_smp_call_function_queue+0xd8/0x230 | | Call trace: | _kvm_host_prot_finalize+0x3c/0x50 | on_each_cpu_cond_mask+0x3c/0x6c | pkvm_drop_host_privileges+0x4c/0x78 | finalize_pkvm+0x3c/0x5c | do_one_initcall+0xcc/0x240 | do_initcall_level+0x8c/0xac | do_initcalls+0x54/0x94 | do_basic_setup+0x1c/0x28 | kernel_init_freeable+0x100/0x16c | kernel_init+0x20/0x1a0 | ret_from_fork+0x10/0x20 | Failed to finalize Hyp protection: -22 | dtb=fvp-base-revc.dtb | kvm [95]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/mem_protect.c:540! | kvm [95]: nVHE call trace: | kvm [95]: [<ffff800081052984>] __kvm_nvhe_hyp_panic+0xac/0xf8 | kvm [95]: [<ffff800081059644>] __kvm_nvhe_handle_host_mem_abort+0x1a0/0x2ac | kvm [95]: [<ffff80008105511c>] __kvm_nvhe_handle_trap+0x4c/0x160 | kvm [95]: [<ffff8000810540fc>] __kvm_nvhe___skip_pauth_save+0x4/0x4 | kvm [95]: ---[ end nVHE call trace ]--- | kvm [95]: Hyp Offset: 0xfffe8db00ffa0000 | Kernel panic - not syncing: HYP panic: | PS:a34023c9 PC:0000f250710b973c ESR:00000000f2000800 | FAR:ffff000800cb00d0 HPFAR:000000000880cb00 PAR:0000000000000000 | VCPU:0000000000000000 | CPU: 3 PID: 95 Comm: kworker/u16:2 Tainted: G W 6.4.0 #237 | Hardware name: FVP Base RevC (DT) | Workqueue: rpciod rpc_async_schedule | Call trace: | dump_backtrace+0xec/0x108 | show_stack+0x18/0x2c | dump_stack_lvl+0x50/0x68 | dump_stack+0x18/0x24 | panic+0x138/0x33c | nvhe_hyp_panic_handler+0x100/0x184 | new_slab+0x23c/0x54c | ___slab_alloc+0x3e4/0x770 | kmem_cache_alloc_node+0x1f0/0x278 | __alloc_skb+0xdc/0x294 | tcp_stream_alloc_skb+0x2c/0xf0 | tcp_sendmsg_locked+0x3d0/0xda4 | tcp_sendmsg+0x38/0x5c | inet_sendmsg+0x44/0x60 | sock_sendmsg+0x1c/0x34 | xprt_sock_sendmsg+0xdc/0x274 | xs_tcp_send_request+0x1ac/0x28c | xprt_transmit+0xcc/0x300 | call_transmit+0x78/0x90 | __rpc_execute+0x114/0x3d8 | rpc_async_schedule+0x28/0x48 | process_one_work+0x1d8/0x314 | worker_thread+0x248/0x474 | kthread+0xfc/0x184 | ret_from_fork+0x10/0x20 | SMP: stopping secondary CPUs | Kernel Offset: 0x57c5cb460000 from 0xffff800080000000 | PHYS_OFFSET: 0x80000000 | CPU features: 0x00000000,1035b7a3,ccfe773f | Memory Limit: none | ---[ end Kernel panic - not syncing: HYP panic: | PS:a34023c9 PC:0000f250710b973c ESR:00000000f2000800 | FAR:ffff000800cb00d0 HPFAR:000000000880cb00 PAR:0000000000000000 | VCPU:0000000000000000 ]--- Fix it by checking for the successfull initialisation of kvm_arm_init() in finalize_pkvm() before proceeding any futher.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix use-after-free Fix potential use-after-free in l2cap_le_command_rej.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: fsdax: force clear dirty mark if CoW XFS allows CoW on non-shared extents to combat fragmentation[1]. The old non-shared extent could be mwrited before, its dax entry is marked dirty. This results in a WARNing: [ 28.512349] ------------[ cut here ]------------ [ 28.512622] WARNING: CPU: 2 PID: 5255 at fs/dax.c:390 dax_insert_entry+0x342/0x390 [ 28.513050] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 nfs lockd grace fscache netfs nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables [ 28.515462] CPU: 2 PID: 5255 Comm: fsstress Kdump: loaded Not tainted 6.3.0-rc1-00001-g85e1481e19c1-dirty #117 [ 28.515902] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Arch Linux 1.16.1-1-1 04/01/2014 [ 28.516307] RIP: 0010:dax_insert_entry+0x342/0x390 [ 28.516536] Code: 30 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 8b 45 20 48 83 c0 01 e9 e2 fe ff ff 48 8b 45 20 48 83 c0 01 e9 cd fe ff ff <0f> 0b e9 53 ff ff ff 48 8b 7c 24 08 31 f6 e8 1b 61 a1 00 eb 8c 48 [ 28.517417] RSP: 0000:ffffc9000845fb18 EFLAGS: 00010086 [ 28.517721] RAX: 0000000000000053 RBX: 0000000000000155 RCX: 000000000018824b [ 28.518113] RDX: 0000000000000000 RSI: ffffffff827525a6 RDI: 00000000ffffffff [ 28.518515] RBP: ffffea00062092c0 R08: 0000000000000000 R09: ffffc9000845f9c8 [ 28.518905] R10: 0000000000000003 R11: ffffffff82ddb7e8 R12: 0000000000000155 [ 28.519301] R13: 0000000000000000 R14: 000000000018824b R15: ffff88810cfa76b8 [ 28.519703] FS: 00007f14a0c94740(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000 [ 28.520148] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 28.520472] CR2: 00007f14a0c8d000 CR3: 000000010321c004 CR4: 0000000000770ee0 [ 28.520863] PKRU: 55555554 [ 28.521043] Call Trace: [ 28.521219] <TASK> [ 28.521368] dax_fault_iter+0x196/0x390 [ 28.521595] dax_iomap_pte_fault+0x19b/0x3d0 [ 28.521852] __xfs_filemap_fault+0x234/0x2b0 [ 28.522116] __do_fault+0x30/0x130 [ 28.522334] do_fault+0x193/0x340 [ 28.522586] __handle_mm_fault+0x2d3/0x690 [ 28.522975] handle_mm_fault+0xe6/0x2c0 [ 28.523259] do_user_addr_fault+0x1bc/0x6f0 [ 28.523521] exc_page_fault+0x60/0x140 [ 28.523763] asm_exc_page_fault+0x22/0x30 [ 28.524001] RIP: 0033:0x7f14a0b589ca [ 28.524225] Code: c5 fe 7f 07 c5 fe 7f 47 20 c5 fe 7f 47 40 c5 fe 7f 47 60 c5 f8 77 c3 66 0f 1f 84 00 00 00 00 00 40 0f b6 c6 48 89 d1 48 89 fa <f3> aa 48 89 d0 c5 f8 77 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 [ 28.525198] RSP: 002b:00007fff1dea1c98 EFLAGS: 00010202 [ 28.525505] RAX: 000000000000001e RBX: 000000000014a000 RCX: 0000000000006046 [ 28.525895] RDX: 00007f14a0c82000 RSI: 000000000000001e RDI: 00007f14a0c8d000 [ 28.526290] RBP: 000000000000006f R08: 0000000000000004 R09: 000000000014a000 [ 28.526681] R10: 0000000000000008 R11: 0000000000000246 R12: 028f5c28f5c28f5c [ 28.527067] R13: 8f5c28f5c28f5c29 R14: 0000000000011046 R15: 00007f14a0c946c0 [ 28.527449] </TASK> [ 28.527600] ---[ end trace 0000000000000000 ]--- To be able to delete this entry, clear its dirty mark before invalidate_inode_pages2_range(). [1] https://lore.kernel.org/linux-xfs/20230321151339.GA11376@frogsfrogsfrogs/
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: rbd: avoid use-after-free in do_rbd_add() when rbd_dev_create() fails If getting an ID or setting up a work queue in rbd_dev_create() fails, use-after-free on rbd_dev->rbd_client, rbd_dev->spec and rbd_dev->opts is triggered in do_rbd_add(). The root cause is that the ownership of these structures is transfered to rbd_dev prematurely and they all end up getting freed when rbd_dev_create() calls rbd_dev_free() prior to returning to do_rbd_add(). Found by Linux Verification Center (linuxtesting.org) with SVACE, an incomplete patch submitted by Natalia Petrova <n.petrova@fintech.ru>.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: net: fec: Better handle pm_runtime_get() failing in .remove() In the (unlikely) event that pm_runtime_get() (disguised as pm_runtime_resume_and_get()) fails, the remove callback returned an error early. The problem with this is that the driver core ignores the error value and continues removing the device. This results in a resource leak. Worse the devm allocated resources are freed and so if a callback of the driver is called later the register mapping is already gone which probably results in a crash.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Fix integer overflow in radeon_cs_parser_init The type of size is unsigned, if size is 0x40000000, there will be an integer overflow, size will be zero after size *= sizeof(uint32_t), will cause uninitialized memory to be referenced later
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: power: supply: axp288_fuel_gauge: Fix external_power_changed race fuel_gauge_external_power_changed() dereferences info->bat, which gets sets in axp288_fuel_gauge_probe() like this: info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg); As soon as devm_power_supply_register() has called device_add() the external_power_changed callback can get called. So there is a window where fuel_gauge_external_power_changed() may get called while info->bat has not been set yet leading to a NULL pointer dereference. Fixing this is easy. The external_power_changed callback gets passed the power_supply which will eventually get stored in info->bat, so fuel_gauge_external_power_changed() can simply directly use the passed in psy argument which is always valid.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously, nilfs_evict_inode() could cause use-after-free read for nilfs_root if inodes are left in "garbage_list" and released by nilfs_dispose_list at the end of nilfs_detach_log_writer(), and this bug was fixed by commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"). However, it turned out that there is another possibility of UAF in the call path where mark_inode_dirty_sync() is called from iput(): nilfs_detach_log_writer() nilfs_dispose_list() iput() mark_inode_dirty_sync() __mark_inode_dirty() nilfs_dirty_inode() __nilfs_mark_inode_dirty() nilfs_load_inode_block() --> causes UAF of nilfs_root struct This can happen after commit 0ae45f63d4ef ("vfs: add support for a lazytime mount option"), which changed iput() to call mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME flag and i_nlink is non-zero. This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only") when using the syzbot reproducer, but the issue has potentially existed before. Fix this issue by adding a "purging flag" to the nilfs structure, setting that flag while disposing the "garbage_list" and checking it in __nilfs_mark_inode_dirty(). Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"), this patch does not rely on ns_writer to determine whether to skip operations, so as not to break recovery on mount. The nilfs_salvage_orphan_logs routine dirties the buffer of salvaged data before attaching the log writer, so changing __nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL will cause recovery write to fail. The purpose of using the cleanup-only flag is to allow for narrowing of such conditions.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: net: hns: fix possible memory leak in hnae_ae_register() Inject fault while probing module, if device_register() fails, but the refcount of kobject is not decreased to 0, the name allocated in dev_set_name() is leaked. Fix this by calling put_device(), so that name can be freed in callback function kobject_cleanup(). unreferenced object 0xffff00c01aba2100 (size 128): comm "systemd-udevd", pid 1259, jiffies 4294903284 (age 294.152s) hex dump (first 32 bytes): 68 6e 61 65 30 00 00 00 18 21 ba 1a c0 00 ff ff hnae0....!...... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000034783f26>] slab_post_alloc_hook+0xa0/0x3e0 [<00000000748188f2>] __kmem_cache_alloc_node+0x164/0x2b0 [<00000000ab0743e8>] __kmalloc_node_track_caller+0x6c/0x390 [<000000006c0ffb13>] kvasprintf+0x8c/0x118 [<00000000fa27bfe1>] kvasprintf_const+0x60/0xc8 [<0000000083e10ed7>] kobject_set_name_vargs+0x3c/0xc0 [<000000000b87affc>] dev_set_name+0x7c/0xa0 [<000000003fd8fe26>] hnae_ae_register+0xcc/0x190 [hnae] [<00000000fe97edc9>] hns_dsaf_ae_init+0x9c/0x108 [hns_dsaf] [<00000000c36ff1eb>] hns_dsaf_probe+0x548/0x748 [hns_dsaf]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_rbtree: fix overlap expiration walk The lazy gc on insert that should remove timed-out entries fails to release the other half of the interval, if any. Can be reproduced with tests/shell/testcases/sets/0044interval_overlap_0 in nftables.git and kmemleak enabled kernel. Second bug is the use of rbe_prev vs. prev pointer. If rbe_prev() returns NULL after at least one iteration, rbe_prev points to element that is not an end interval, hence it should not be removed. Lastly, check the genmask of the end interval if this is active in the current generation.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16


Contact Us

Shodan ® - All rights reserved