In the Linux kernel, the following vulnerability has been resolved:
dm: Always split write BIOs to zoned device limits
Any zoned DM target that requires zone append emulation will use the
block layer zone write plugging. In such case, DM target drivers must
not split BIOs using dm_accept_partial_bio() as doing so can potentially
lead to deadlocks with queue freeze operations. Regular write operations
used to emulate zone append operations also cannot be split by the
target driver as that would result in an invalid writen sector value
return using the BIO sector.
In order for zoned DM target drivers to avoid such incorrect BIO
splitting, we must ensure that large BIOs are split before being passed
to the map() function of the target, thus guaranteeing that the
limits for the mapped device are not exceeded.
dm-crypt and dm-flakey are the only target drivers supporting zoned
devices and using dm_accept_partial_bio().
In the case of dm-crypt, this function is used to split BIOs to the
internal max_write_size limit (which will be suppressed in a different
patch). However, since crypt_alloc_buffer() uses a bioset allowing only
up to BIO_MAX_VECS (256) vectors in a BIO. The dm-crypt device
max_segments limit, which is not set and so default to BLK_MAX_SEGMENTS
(128), must thus be respected and write BIOs split accordingly.
In the case of dm-flakey, since zone append emulation is not required,
the block layer zone write plugging is not used and no splitting of BIOs
required.
Modify the function dm_zone_bio_needs_split() to use the block layer
helper function bio_needs_zone_write_plugging() to force a call to
bio_split_to_limits() in dm_split_and_process_bio(). This allows DM
target drivers to avoid using dm_accept_partial_bio() for write
operations on zoned DM devices.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/memmap: cast nr_pages to size_t before shifting
If the allocated size exceeds UINT_MAX, then it's necessary to cast
the mr->nr_pages value to size_t to prevent it from overflowing. In
practice this isn't much of a concern as the required memory size will
have been validated upfront, and accounted to the user. And > 4GB sizes
will be necessary to make the lack of a cast a problem, which greatly
exceeds normal user locked_vm settings that are generally in the kb to
mb range. However, if root is used, then accounting isn't done, and
then it's possible to hit this issue.
A security flaw has been discovered in JeecgBoot up to 3.8.2. Affected by this issue is some unknown functionality of the file /sys/tenant/exportLog of the component Tenant Log Export. The manipulation results in improper authorization. The attack can be launched remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way.
Hono is a Web application framework that provides support for any JavaScript runtime. In versions prior to 4.9.7, a flaw in the `bodyLimit` middleware could allow bypassing the configured request body size limit when conflicting HTTP headers were present. The middleware previously prioritized the `Content-Length` header even when a `Transfer-Encoding: chunked` header was also included. According to the HTTP specification, `Content-Length` must be ignored in such cases. This discrepancy could allow oversized request bodies to bypass the configured limit. Most standards-compliant runtimes and reverse proxies may reject such malformed requests with `400 Bad Request`, so the practical impact depends on the runtime and deployment environment. If body size limits are used as a safeguard against large or malicious requests, this flaw could allow attackers to send oversized request bodies. The primary risk is denial of service (DoS) due to excessive memory or CPU consumption when handling very large requests. The implementation has been updated to align with the HTTP specification, ensuring that `Transfer-Encoding` takes precedence over `Content-Length`. The issue is fixed in Hono v4.9.7, and all users should upgrade immediately.
A vulnerability was identified in JeecgBoot up to 3.8.2. Affected by this vulnerability is an unknown functionality of the file /api/system/sendWebSocketMsg of the component WebSocket Message Handler. The manipulation of the argument userIds leads to improper authorization. The attack can be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way.