Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.11.8  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix bug due to prealloc collision When userspace is using AF_RXRPC to provide a server, it has to preallocate incoming calls and assign to them call IDs that will be used to thread related recvmsg() and sendmsg() together. The preallocated call IDs will automatically be attached to calls as they come in until the pool is empty. To the kernel, the call IDs are just arbitrary numbers, but userspace can use the call ID to hold a pointer to prepared structs. In any case, the user isn't permitted to create two calls with the same call ID (call IDs become available again when the call ends) and EBADSLT should result from sendmsg() if an attempt is made to preallocate a call with an in-use call ID. However, the cleanup in the error handling will trigger both assertions in rxrpc_cleanup_call() because the call isn't marked complete and isn't marked as having been released. Fix this by setting the call state in rxrpc_service_prealloc_one() and then marking it as being released before calling the cleanup function.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: atm: clip: Fix memory leak of struct clip_vcc. ioctl(ATMARP_MKIP) allocates struct clip_vcc and set it to vcc->user_back. The code assumes that vcc_destroy_socket() passes NULL skb to vcc->push() when the socket is close()d, and then clip_push() frees clip_vcc. However, ioctl(ATMARPD_CTRL) sets NULL to vcc->push() in atm_init_atmarp(), resulting in memory leak. Let's serialise two ioctl() by lock_sock() and check vcc->push() in atm_init_atmarp() to prevent memleak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: dmaengine: nbpfaxi: Fix memory corruption in probe() The nbpf->chan[] array is allocated earlier in the nbpf_probe() function and it has "num_channels" elements. These three loops iterate one element farther than they should and corrupt memory. The changes to the second loop are more involved. In this case, we're copying data from the irqbuf[] array into the nbpf->chan[] array. If the data in irqbuf[i] is the error IRQ then we skip it, so the iterators are not in sync. I added a check to ensure that we don't go beyond the end of the irqbuf[] array. I'm pretty sure this can't happen, but it seemed harmless to add a check. On the other hand, after the loop has ended there is a check to ensure that the "chan" iterator is where we expect it to be. In the original code we went one element beyond the end of the array so the iterator wasn't in the correct place and it would always return -EINVAL. However, now it will always be in the correct place. I deleted the check since we know the result.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: tracing: Add down_write(trace_event_sem) when adding trace event When a module is loaded, it adds trace events defined by the module. It may also need to modify the modules trace printk formats to replace enum names with their values. If two modules are loaded at the same time, the adding of the event to the ftrace_events list can corrupt the walking of the list in the code that is modifying the printk format strings and crash the kernel. The addition of the event should take the trace_event_sem for write while it adds the new event. Also add a lockdep_assert_held() on that semaphore in __trace_add_event_dirs() as it iterates the list.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: HID: quirks: Add quirk for 2 Chicony Electronics HP 5MP Cameras The Chicony Electronics HP 5MP Cameras (USB ID 04F2:B824 & 04F2:B82C) report a HID sensor interface that is not actually implemented. Attempting to access this non-functional sensor via iio_info causes system hangs as runtime PM tries to wake up an unresponsive sensor. Add these 2 devices to the HID ignore list since the sensor interface is non-functional by design and should not be exposed to userspace.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: comedi: aio_iiro_16: Fix bit shift out of bounds When checking for a supported IRQ number, the following test is used: if ((1 << it->options[1]) & 0xdcfc) { However, `it->options[i]` is an unchecked `int` value from userspace, so the shift amount could be negative or out of bounds. Fix the test by requiring `it->options[1]` to be within bounds before proceeding with the original test. Valid `it->options[1]` values that select the IRQ will be in the range [1,15]. The value 0 explicitly disables the use of interrupts.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: comedi: pcl812: Fix bit shift out of bounds When checking for a supported IRQ number, the following test is used: if ((1 << it->options[1]) & board->irq_bits) { However, `it->options[i]` is an unchecked `int` value from userspace, so the shift amount could be negative or out of bounds. Fix the test by requiring `it->options[1]` to be within bounds before proceeding with the original test. Valid `it->options[1]` values that select the IRQ will be in the range [1,15]. The value 0 explicitly disables the use of interrupts.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: iio: common: st_sensors: Fix use of uninitialize device structs Throughout the various probe functions &indio_dev->dev is used before it is initialized. This caused a kernel panic in st_sensors_power_enable() when the call to devm_regulator_bulk_get_enable() fails and then calls dev_err_probe() with the uninitialized device. This seems to only cause a panic with dev_err_probe(), dev_err(), dev_warn() and dev_info() don't seem to cause a panic, but are fixed as well. The issue is reported and traced here: [1]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix recv-recv race of completed call If a call receives an event (such as incoming data), the call gets placed on the socket's queue and a thread in recvmsg can be awakened to go and process it. Once the thread has picked up the call off of the queue, further events will cause it to be requeued, and once the socket lock is dropped (recvmsg uses call->user_mutex to allow the socket to be used in parallel), a second thread can come in and its recvmsg can pop the call off the socket queue again. In such a case, the first thread will be receiving stuff from the call and the second thread will be blocked on call->user_mutex. The first thread can, at this point, process both the event that it picked call for and the event that the second thread picked the call for and may see the call terminate - in which case the call will be "released", decoupling the call from the user call ID assigned to it (RXRPC_USER_CALL_ID in the control message). The first thread will return okay, but then the second thread will wake up holding the user_mutex and, if it sees that the call has been released by the first thread, it will BUG thusly: kernel BUG at net/rxrpc/recvmsg.c:474! Fix this by just dequeuing the call and ignoring it if it is seen to be already released. We can't tell userspace about it anyway as the user call ID has become stale.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: wifi: zd1211rw: Fix potential NULL pointer dereference in zd_mac_tx_to_dev() There is a potential NULL pointer dereference in zd_mac_tx_to_dev(). For example, the following is possible: T0 T1 zd_mac_tx_to_dev() /* len == skb_queue_len(q) */ while (len > ZD_MAC_MAX_ACK_WAITERS) { filter_ack() spin_lock_irqsave(&q->lock, flags); /* position == skb_queue_len(q) */ for (i=1; i<position; i++) skb = __skb_dequeue(q) if (mac->type == NL80211_IFTYPE_AP) skb = __skb_dequeue(q); spin_unlock_irqrestore(&q->lock, flags); skb_dequeue() -> NULL Since there is a small gap between checking skb queue length and skb being unconditionally dequeued in zd_mac_tx_to_dev(), skb_dequeue() can return NULL. Then the pointer is passed to zd_mac_tx_status() where it is dereferenced. In order to avoid potential NULL pointer dereference due to situations like above, check if skb is not NULL before passing it to zd_mac_tx_status(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16


Contact Us

Shodan ® - All rights reserved