In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix null-ptr-deref when journal load failed.
During the mounting process, if journal_reset() fails because of too short
journal, then lead to jbd2_journal_load() fails with NULL j_sb_buffer.
Subsequently, ocfs2_journal_shutdown() calls
jbd2_journal_flush()->jbd2_cleanup_journal_tail()->
__jbd2_update_log_tail()->jbd2_journal_update_sb_log_tail()
->lock_buffer(journal->j_sb_buffer), resulting in a null-pointer
dereference error.
To resolve this issue, we should check the JBD2_LOADED flag to ensure the
journal was properly loaded. Additionally, use journal instead of
osb->journal directly to simplify the code.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix array out-of-bound access in SoC stats
Currently, the ath12k_soc_dp_stats::hal_reo_error array is defined with a
maximum size of DP_REO_DST_RING_MAX. However, the ath12k_dp_rx_process()
function access ath12k_soc_dp_stats::hal_reo_error using the REO
destination SRNG ring ID, which is incorrect. SRNG ring ID differ from
normal ring ID, and this usage leads to out-of-bounds array access. To
fix this issue, modify ath12k_dp_rx_process() to use the normal ring ID
directly instead of the SRNG ring ID to avoid out-of-bounds array access.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
blk_iocost: fix more out of bound shifts
Recently running UBSAN caught few out of bound shifts in the
ioc_forgive_debts() function:
UBSAN: shift-out-of-bounds in block/blk-iocost.c:2142:38
shift exponent 80 is too large for 64-bit type 'u64' (aka 'unsigned long
long')
...
UBSAN: shift-out-of-bounds in block/blk-iocost.c:2144:30
shift exponent 80 is too large for 64-bit type 'u64' (aka 'unsigned long
long')
...
Call Trace:
<IRQ>
dump_stack_lvl+0xca/0x130
__ubsan_handle_shift_out_of_bounds+0x22c/0x280
? __lock_acquire+0x6441/0x7c10
ioc_timer_fn+0x6cec/0x7750
? blk_iocost_init+0x720/0x720
? call_timer_fn+0x5d/0x470
call_timer_fn+0xfa/0x470
? blk_iocost_init+0x720/0x720
__run_timer_base+0x519/0x700
...
Actual impact of this issue was not identified but I propose to fix the
undefined behaviour.
The proposed fix to prevent those out of bound shifts consist of
precalculating exponent before using it the shift operations by taking
min value from the actual exponent and maximum possible number of bits.
In the Linux kernel, the following vulnerability has been resolved:
net/xen-netback: prevent UAF in xenvif_flush_hash()
During the list_for_each_entry_rcu iteration call of xenvif_flush_hash,
kfree_rcu does not exist inside the rcu read critical section, so if
kfree_rcu is called when the rcu grace period ends during the iteration,
UAF occurs when accessing head->next after the entry becomes free.
Therefore, to solve this, you need to change it to list_for_each_entry_safe.
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: Set correct chandef when starting CAC
When starting CAC in a mode other than AP mode, it return a
"WARNING: CPU: 0 PID: 63 at cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]"
caused by the chandef.chan being null at the end of CAC.
Solution: Ensure the channel definition is set for the different modes
when starting CAC to avoid getting a NULL 'chan' at the end of CAC.
Call Trace:
? show_regs.part.0+0x14/0x16
? __warn+0x67/0xc0
? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]
? report_bug+0xa7/0x130
? exc_overflow+0x30/0x30
? handle_bug+0x27/0x50
? exc_invalid_op+0x18/0x60
? handle_exception+0xf6/0xf6
? exc_overflow+0x30/0x30
? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]
? exc_overflow+0x30/0x30
? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]
? regulatory_propagate_dfs_state.cold+0x1b/0x4c [cfg80211]
? cfg80211_propagate_cac_done_wk+0x1a/0x30 [cfg80211]
? process_one_work+0x165/0x280
? worker_thread+0x120/0x3f0
? kthread+0xc2/0xf0
? process_one_work+0x280/0x280
? kthread_complete_and_exit+0x20/0x20
? ret_from_fork+0x19/0x24
[shorten subject, remove OCB, reorder cases to match previous list]
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k_htc: Use __skb_set_length() for resetting urb before resubmit
Syzbot points out that skb_trim() has a sanity check on the existing length of
the skb, which can be uninitialised in some error paths. The intent here is
clearly just to reset the length to zero before resubmitting, so switch to
calling __skb_set_length(skb, 0) directly. In addition, __skb_set_length()
already contains a call to skb_reset_tail_pointer(), so remove the redundant
call.
The syzbot report came from ath9k_hif_usb_reg_in_cb(), but there's a similar
usage of skb_trim() in ath9k_hif_usb_rx_cb(), change both while we're at it.