In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_xattr_find_entry()
Add a paranoia check to make sure it doesn't stray beyond valid memory
region containing ocfs2 xattr entries when scanning for a match. It will
prevent out-of-bound access in case of crafted images.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: pause TCM when the firmware is stopped
Not doing so will make us send a host command to the transport while the
firmware is not alive, which will trigger a WARNING.
bad state = 0
WARNING: CPU: 2 PID: 17434 at drivers/net/wireless/intel/iwlwifi/iwl-trans.c:115 iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi]
RIP: 0010:iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi]
Call Trace:
<TASK>
iwl_mvm_send_cmd+0x40/0xc0 [iwlmvm]
iwl_mvm_config_scan+0x198/0x260 [iwlmvm]
iwl_mvm_recalc_tcm+0x730/0x11d0 [iwlmvm]
iwl_mvm_tcm_work+0x1d/0x30 [iwlmvm]
process_one_work+0x29e/0x640
worker_thread+0x2df/0x690
? rescuer_thread+0x540/0x540
kthread+0x192/0x1e0
? set_kthread_struct+0x90/0x90
ret_from_fork+0x22/0x30
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable DMCUB timeout for DCN35
[Why]
DMCUB can intermittently take longer than expected to process commands.
Old ASIC policy was to continue while logging a diagnostic error - which
works fine for ASIC without IPS, but with IPS this could lead to a race
condition where we attempt to access DCN state while it's inaccessible,
leading to a system hang when the NIU port is not disabled or register
accesses that timeout and the display configuration in an undefined
state.
[How]
We need to investigate why these accesses take longer than expected, but
for now we should disable the timeout on DCN35 to avoid this race
condition. Since the waits happen only at lower interrupt levels the
risk of taking too long at higher IRQ and causing a system watchdog
timeout are minimal.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Correct the defined value for AMDGPU_DMUB_NOTIFICATION_MAX
[Why & How]
It actually exposes '6' types in enum dmub_notification_type. Not 5. Using smaller
number to create array dmub_callback & dmub_thread_offload has potential to access
item out of array bound. Fix it.
In the Linux kernel, the following vulnerability has been resolved:
crypto: stm32/cryp - call finalize with bh disabled
The finalize operation in interrupt mode produce a produces a spinlock
recursion warning. The reason is the fact that BH must be disabled
during this process.
In the Linux kernel, the following vulnerability has been resolved:
smack: tcp: ipv4, fix incorrect labeling
Currently, Smack mirrors the label of incoming tcp/ipv4 connections:
when a label 'foo' connects to a label 'bar' with tcp/ipv4,
'foo' always gets 'foo' in returned ipv4 packets. So,
1) returned packets are incorrectly labeled ('foo' instead of 'bar')
2) 'bar' can write to 'foo' without being authorized to write.
Here is a scenario how to see this:
* Take two machines, let's call them C and S,
with active Smack in the default state
(no settings, no rules, no labeled hosts, only builtin labels)
* At S, add Smack rule 'foo bar w'
(labels 'foo' and 'bar' are instantiated at S at this moment)
* At S, at label 'bar', launch a program
that listens for incoming tcp/ipv4 connections
* From C, at label 'foo', connect to the listener at S.
(label 'foo' is instantiated at C at this moment)
Connection succeedes and works.
* Send some data in both directions.
* Collect network traffic of this connection.
All packets in both directions are labeled with the CIPSO
of the label 'foo'. Hence, label 'bar' writes to 'foo' without
being authorized, and even without ever being known at C.
If anybody cares: exactly the same happens with DCCP.
This behavior 1st manifested in release 2.6.29.4 (see Fixes below)
and it looks unintentional. At least, no explanation was provided.
I changed returned packes label into the 'bar',
to bring it into line with the Smack documentation claims.
In the Linux kernel, the following vulnerability has been resolved:
fsnotify: clear PARENT_WATCHED flags lazily
In some setups directories can have many (usually negative) dentries.
Hence __fsnotify_update_child_dentry_flags() function can take a
significant amount of time. Since the bulk of this function happens
under inode->i_lock this causes a significant contention on the lock
when we remove the watch from the directory as the
__fsnotify_update_child_dentry_flags() call from fsnotify_recalc_mask()
races with __fsnotify_update_child_dentry_flags() calls from
__fsnotify_parent() happening on children. This can lead upto softlockup
reports reported by users.
Fix the problem by calling fsnotify_update_children_dentry_flags() to
set PARENT_WATCHED flags only when parent starts watching children.
When parent stops watching children, clear false positive PARENT_WATCHED
flags lazily in __fsnotify_parent() for each accessed child.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix NULL pointer access in mt7921_ipv6_addr_change
When disabling wifi mt7921_ipv6_addr_change() is called as a notifier.
At this point mvif->phy is already NULL so we cannot use it here.
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: do not stop RX on failing RX callback
RX callbacks can fail for multiple reasons:
* Payload too short
* Payload formatted incorrecly (e.g. bad NCM framing)
* Lack of memory
None of these should cause the driver to seize up.
Make such failures non-critical and continue processing further
incoming URBs.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: soc-acpi-intel-lnl-match: add missing empty item
There is no links_num in struct snd_soc_acpi_mach {}, and we test
!link->num_adr as a condition to end the loop in hda_sdw_machine_select().
So an empty item in struct snd_soc_acpi_link_adr array is required.